Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Light-enhanced gating effect on the persistent photoconductivity at LaAlO3/SrTiO3 interface

Dao Liu-Yun Zhang Zi-Tao Xiao Yu-Tong Zhang Ming-Hao Wang Shuai He Jun Jia Jin-Shan Yu Le-Jun Sun Bo Xiong Chang-Min

Citation:

Light-enhanced gating effect on the persistent photoconductivity at LaAlO3/SrTiO3 interface

Dao Liu-Yun, Zhang Zi-Tao, Xiao Yu-Tong, Zhang Ming-Hao, Wang Shuai, He Jun, Jia Jin-Shan, Yu Le-Jun, Sun Bo, Xiong Chang-Min
PDF
HTML
Get Citation
  • The LaAlO3/SrTiO3 interface has been one of the topics studied most during the past few years due to its many intriguing properties such as the two-dimensional electron gas, transient photoconductivity (PC), persistent photoconductivity (PPC), and the coexistence of the PC and PPC. Of them, the PPC effect is the most interesting because of its potential application in exploring the photoelectric memory devices. Until now, tuning of the PPC of the LaAlO3/SrTiO3 interface under the external stimuli, such as electric or magnetic field is less addressed, while the relevant knowledge is of great value for exploring the memory devices with multifunctionality. In this paper, we report on an electric field control of the persistent PPC at the LaAlO3/SrTiO3 interface. Our LaAlO3/SrTiO3 heterojunction is fabricated by growing the LaAlO3 film on the SrTiO3 substrates through using pulsed laser deposition. The substrate temperature is kept at 750 ℃ and the partial pressure of oxygen is maintained at 3.3 × 10–5 Torr (1 Torr = 1.33322 × 102 Pa) during the deposition. The thickness of LaAlO3 film is controlled to be about 2 nm by setting an appropriate deposition time. The X-ray diffraction experiment confirms that the LAO film is well epitaxial and of single phase. To guarantee the good electric contacts, Al electrodes are soldered at the LaAlO3/SrTiO3 interface and the back side of the SrTiO3 respectively by ultrasonic welding. We find that the PPC at the LaAlO3/SrTiO3 interface can be significantly reinforced and modulated by the light-enhanced gating effects: that is, after a negative back gate voltage processing combined with a simultaneous light illumination, the LaAlO3/SrTiO3 interface can exhibit a notable PPC effect. And the PPC effect increases as the negative gate voltage increases, and then attains a maximum at a back gate voltage of about –70 V. Further increase of the negative gate voltage can cause the PPC to decrease. Additionally, the PPC is also found to increase monotonically with increasing the gating time. The present result can be understood in terms of the migration of the oxygen vacancies under the influence of photoelectric synergetic effect. This field enhanced PPC effects at the LaAlO3/SrTiO3 interface may find their applications in designing the photoelectric memory devices with electric tunability.
      Corresponding author: Xiong Chang-Min, cmxiong@bnu.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFB0405101) and the National Natural Science Foundation of China (Grant No. 11474024).
    [1]

    Ohtomoa A, Hwang H Y 2004 Nature 427 423Google Scholar

    [2]

    Reyren N, Thiel S, Caviglia A D, Kourkoutis L F, Hammerl G, Richter C, Schneider C W, Kopp T, Ruetschi A S, Jaccard D, Gabay M, Muller D A, Triscone J M, Mannhart J 2007 Science 317 1196Google Scholar

    [3]

    Richter C, Boschker H, Dietsche W, Fillis-Tsirakis E, Jany R, Loder F, Kourkoutis L F, Muller D A, Kirtley J R, Schneider C W, Mannhart J 2013 Nature 502 528Google Scholar

    [4]

    Dikin D A, Mehta M, Bark C W, Folkman C M, Eom C B, Chandrasekhar V 2011 Phys. Rev. Lett. 107 056802Google Scholar

    [5]

    Caviglia A D, Gariglio S, Cancellieri C, Sacépé B, Fête A, Reyren N, Gabay M, Morpurgo A F, Triscone J M 2010 Phys. Rev. Lett. 105 236802Google Scholar

    [6]

    Liu Z Q, Li C J, Lu W M, Huang X H, Huang Z, Zeng S W, Qiu X P, Huang L S, Annadi A, Chen J S, Coey J M D, Venkatesan T, Ariando 2013 Phys. Rev. B 87 201102(R)Google Scholar

    [7]

    Herranz G, Basletić M, Bibes M, Carrétéro C, Tafra E, Jacquet E, Bouzehouane K, Deranlot C, Hamzić A, Broto J M, Barthélémy A, Fert A 2007 Phys. Rev. Lett. 98 216803Google Scholar

    [8]

    Kalabukhov A, Gunnarsson R, Börjesson J, Olsson E, Claeson T, Winkler D 2007 Phys. Rev. B 75 121404Google Scholar

    [9]

    Siemons W, Koster G, Yamamoto H, Harrison W A, Lucovsky G, Geballe T H, Blank D H A, Beasley M R 2007 Phys. Rev. Lett. 98 196802Google Scholar

    [10]

    Zhang H R, Zhang Y, Zhang H, Zhang J, Shen X, Guan X X, Chen Y Z, Yu R C, Pryds N, Chen Y S, Shen B G , Sun J R 2017 Phys. Rev. B 96 195167Google Scholar

    [11]

    Guduru V K, Granados del Aguila A, Wenderich S, Kruize M K, McCollam A, Christianen P C M, Zeitler U, Brinkman A, Rijnders G, Hilgenkamp H, Maan J C 2013 Appl. Phys. Lett. 102 051604Google Scholar

    [12]

    Lu H L, Liao Z M, Zhang L, Yuan W T, Wang Y, Ma X M, Yu D P 2013 Sci. Rep. 3 2870Google Scholar

    [13]

    Tarun M C, Selim F A, McCluskey M D 2013 Phys. Rev. Lett. 111 187403Google Scholar

    [14]

    Tebano A, Fabbri E, Pergolesi D, Balestrino G, Traversa E 2012 ACS Nano 6 1278Google Scholar

    [15]

    Ristic Z, di Capua R, Chiarella F, de Luca G M, Maggio-Aprile I, Radovic M, Salluzzo M 2012 Phys. Rev. B 86 045127Google Scholar

    [16]

    Rastogi A, Pulikkotil J J, Budhani R C 2014 Phys. Rev. B 89 125127Google Scholar

    [17]

    Jin K X, Lin W, Luo B C, Wu T 2012 Sci. Rep. 5 8778Google Scholar

    [18]

    Lei Y, Li Y, Chen Y Z, Xie Y W, Chen Y S, Wang S H, Wang J, Shen B G, Pryds N, Hwang H Y, Sun J R 2014 Nat. Commun. 5 5554Google Scholar

    [19]

    Ravikumar V, Wolf D, Dravid V P 1995 Phys. Rev. Lett. 74 960Google Scholar

    [20]

    Haeni J H, Irvin P, Chang W, Uecker R, Reiche P, Li Y L, Choudhury S, Tian W, Hawley M E, Craigo B, Tagantsev A K, Pan X Q, Streiffer S K, Chen L Q, Kirchoefer S W, Levy J, Schlom D G 2004 Nature 430 758Google Scholar

  • 图 1  LAO/STO测量接线示意图

    Figure 1.  Sketch of the experimental setup of the LAO/STO device.

    图 2  LAO/STO样品的界面R-T特性曲线

    Figure 2.  R-T curve measured at LAO/STO interface.

    图 3  LAO/STO界面电阻R与门电压Vgate随时间t的变化 (a)在不同光照下Rt的变化; (b)Vgatet的变化

    Figure 3.  Time dependence of resistance R and gate voltage Vgate of LAO/STO: (a) Time dependence of R under different light illumination; (b) time dependence of gate voltage.

    图 4  光照对LAO/STO界面电阻R的影响, 图中“on”和“off”分别代表光照的开和关

    Figure 4.  Effect of light illumination on the LAO/STO resistance. “on” and “off” represent the switch on and off of the illumination, respectively.

    图 5  LAO/STO界面Rt的变化, 其中测量期间, 门电压或光照来回“开”和“关”; 图中, “L”代表加光照, “U”代表加电压; “on”和“off”分别代表门电压或光照的开和关; 内插图为830—1460 s区间的放大图

    Figure 5.  R of the LAO/STO interface as a function of response time while the gate voltage (marked by “U”) and light illumination (marked by “L”) is switched on and off. Inset is a close view of the R-time curve between 830 s and 1460 s.

    图 6  LAO/STO界面R分别经不同栅压处理后的随t变化, 其中测量期间, 门电压或光照来回“开”和“关” (图中, “L”代表加光照, “U”代表加电压; “on”和“off”分别代表门电压或光照的开和关) (a) –40 V; (b) –60 V; (c) –70 V; (d) –80 V

    Figure 6.  Time dependences of R of the LAO/STO interface after the processing of various gate voltages while the gate voltages (marked by “U”) and light illumination (marked by “L”) are switched on and off: (a) –40 V; (b) –60 V; (c) –70 V; (d) –80 V.

    图 7  PPC值随Vgate的变化, 其中内插图为RnVgate的变化

    Figure 7.  Relationship between the PPC value and gate voltage (Vgate). Inset is the dependence of Rn on Vgate.

    图 8  门电压的处理时间td对PPC值的影响关系, 插图为Rntd的变化关系

    Figure 8.  The PPC value as a function of gating time td. Inset is the dependence of Rn on td.

  • [1]

    Ohtomoa A, Hwang H Y 2004 Nature 427 423Google Scholar

    [2]

    Reyren N, Thiel S, Caviglia A D, Kourkoutis L F, Hammerl G, Richter C, Schneider C W, Kopp T, Ruetschi A S, Jaccard D, Gabay M, Muller D A, Triscone J M, Mannhart J 2007 Science 317 1196Google Scholar

    [3]

    Richter C, Boschker H, Dietsche W, Fillis-Tsirakis E, Jany R, Loder F, Kourkoutis L F, Muller D A, Kirtley J R, Schneider C W, Mannhart J 2013 Nature 502 528Google Scholar

    [4]

    Dikin D A, Mehta M, Bark C W, Folkman C M, Eom C B, Chandrasekhar V 2011 Phys. Rev. Lett. 107 056802Google Scholar

    [5]

    Caviglia A D, Gariglio S, Cancellieri C, Sacépé B, Fête A, Reyren N, Gabay M, Morpurgo A F, Triscone J M 2010 Phys. Rev. Lett. 105 236802Google Scholar

    [6]

    Liu Z Q, Li C J, Lu W M, Huang X H, Huang Z, Zeng S W, Qiu X P, Huang L S, Annadi A, Chen J S, Coey J M D, Venkatesan T, Ariando 2013 Phys. Rev. B 87 201102(R)Google Scholar

    [7]

    Herranz G, Basletić M, Bibes M, Carrétéro C, Tafra E, Jacquet E, Bouzehouane K, Deranlot C, Hamzić A, Broto J M, Barthélémy A, Fert A 2007 Phys. Rev. Lett. 98 216803Google Scholar

    [8]

    Kalabukhov A, Gunnarsson R, Börjesson J, Olsson E, Claeson T, Winkler D 2007 Phys. Rev. B 75 121404Google Scholar

    [9]

    Siemons W, Koster G, Yamamoto H, Harrison W A, Lucovsky G, Geballe T H, Blank D H A, Beasley M R 2007 Phys. Rev. Lett. 98 196802Google Scholar

    [10]

    Zhang H R, Zhang Y, Zhang H, Zhang J, Shen X, Guan X X, Chen Y Z, Yu R C, Pryds N, Chen Y S, Shen B G , Sun J R 2017 Phys. Rev. B 96 195167Google Scholar

    [11]

    Guduru V K, Granados del Aguila A, Wenderich S, Kruize M K, McCollam A, Christianen P C M, Zeitler U, Brinkman A, Rijnders G, Hilgenkamp H, Maan J C 2013 Appl. Phys. Lett. 102 051604Google Scholar

    [12]

    Lu H L, Liao Z M, Zhang L, Yuan W T, Wang Y, Ma X M, Yu D P 2013 Sci. Rep. 3 2870Google Scholar

    [13]

    Tarun M C, Selim F A, McCluskey M D 2013 Phys. Rev. Lett. 111 187403Google Scholar

    [14]

    Tebano A, Fabbri E, Pergolesi D, Balestrino G, Traversa E 2012 ACS Nano 6 1278Google Scholar

    [15]

    Ristic Z, di Capua R, Chiarella F, de Luca G M, Maggio-Aprile I, Radovic M, Salluzzo M 2012 Phys. Rev. B 86 045127Google Scholar

    [16]

    Rastogi A, Pulikkotil J J, Budhani R C 2014 Phys. Rev. B 89 125127Google Scholar

    [17]

    Jin K X, Lin W, Luo B C, Wu T 2012 Sci. Rep. 5 8778Google Scholar

    [18]

    Lei Y, Li Y, Chen Y Z, Xie Y W, Chen Y S, Wang S H, Wang J, Shen B G, Pryds N, Hwang H Y, Sun J R 2014 Nat. Commun. 5 5554Google Scholar

    [19]

    Ravikumar V, Wolf D, Dravid V P 1995 Phys. Rev. Lett. 74 960Google Scholar

    [20]

    Haeni J H, Irvin P, Chang W, Uecker R, Reiche P, Li Y L, Choudhury S, Tian W, Hawley M E, Craigo B, Tagantsev A K, Pan X Q, Streiffer S K, Chen L Q, Kirchoefer S W, Levy J, Schlom D G 2004 Nature 430 758Google Scholar

  • [1] Qiao Yu-Jie, Zhang Zi-Tao, Shao Ting-Na, Zhao Qiang, Chen Xing-Yu, Chen Mei-Hui, Zhu Fang-Hui, Nie Jia-Cai. Anomalous metallic state regulated by magnetic field at LaAlO3/SrTiO3 heterointerface. Acta Physica Sinica, 2023, 72(13): 137302. doi: 10.7498/aps.72.20230410
    [2] Chen Wei-Long, Guo Rong-Rong, Tong Yu-Shen, Liu Li-Li, Zhou Sheng-Lan, Lin Jin-Hai. Influence of sub-bandgap illumination on electric field distribution at grain boundary in CdZnTe crystals. Acta Physica Sinica, 2022, 71(22): 226101. doi: 10.7498/aps.71.20220896
    [3] Chen Xu-Min, Ye Pan, Wang Ji-Guang, Huo De-Xuan, Cao Dong-Xing. Flexoelectric effect of perovskite superlattice SrTiO3/BaTiO3. Acta Physica Sinica, 2022, 71(20): 206302. doi: 10.7498/aps.71.20220988
    [4] Wei Gao-Shuai, Zhang Hui, Wu Xiao-Jun, Zhang Hong-Rui, Wang Chun, Wang Bo, Wang Li, Sun Ji-Rong. Terahertz emission from LaAlO3/SrTiO3 heterostructures pumped with femtosecond laser. Acta Physica Sinica, 2022, 71(9): 090702. doi: 10.7498/aps.71.20201139
    [5] Xi Jian-Feng, Li Bao-He, Liu Dan, Li Xiong, Geng Ai-Cong, Li Xiao. Enhanced photovoltaic effect in LaAlO3/SrTiO3 interface. Acta Physica Sinica, 2021, 70(8): 086802. doi: 10.7498/aps.70.20201330
    [6] Liu Chuan-Chuan, Hao Fei-Xiang, Yin Yue-Wei, Li Xiao-Guang. Photovoltaic effect and photo-assisted diode behavior in Pt/BiFeO3/Nb-doped SrTiO3 heterojunction. Acta Physica Sinica, 2020, 69(12): 127301. doi: 10.7498/aps.69.20200280
    [7] An Ming, Dong Shuai. Charge-mediated magnetoelectricity: from ferroelectric field effect to charge-ordering ferroelectrics. Acta Physica Sinica, 2020, 69(21): 217502. doi: 10.7498/aps.69.20201193
    [8] He Dong-Mei, Peng Bin, Zhang Wan-Li, Zhang Wen-Xu. Inverse spin Hall effect in Nb doped SrTiO3. Acta Physica Sinica, 2019, 68(10): 106101. doi: 10.7498/aps.68.20190118
    [9] Ruan Lu-Feng, Wang Lei, Sun De-Yan. Effect of Sr doping on electronic structure of La1-xSrxMnO3/LaAlO3/SrTiO3 heterointerface. Acta Physica Sinica, 2017, 66(18): 187301. doi: 10.7498/aps.66.187301
    [10] Liu Lin, Wang Yong-Tian. Investigation of photo-induced phenomenon in the silicon nanowires made by chemical etching in HF/Fe(NO3)3 solution. Acta Physica Sinica, 2015, 64(14): 148201. doi: 10.7498/aps.64.148201
    [11] Wang Ai-Di, Liu Zi-Yu, Zhang Pei-Jian, Meng Yang, Li Dong, Zhao Hong-Wu. Low frequency noise analysis and resistance relaxation in Au/SrTiO3/Au for bipolar resistive switching. Acta Physica Sinica, 2013, 62(19): 197201. doi: 10.7498/aps.62.197201
    [12] Wang Lan-Xi, Chen Xue-Kang, Wu Gan, Cao Sheng-Zhu, Shang Kai-Wen. The influence of grain boundary on time response of diamond ultraviolet photo-detector. Acta Physica Sinica, 2012, 61(3): 038101. doi: 10.7498/aps.61.038101
    [13] Shi Wei, Ma Xiang-Rong, Xue Hong. Transient thermal effect of semi-insulating GaAs photoconductive switch. Acta Physica Sinica, 2010, 59(8): 5700-5705. doi: 10.7498/aps.59.5700
    [14] Qin Yi, Zhang Hui, Tan Song-Lin, Liu Ting, Zhang Peng-Xiang. Preparation and laser induced thermoelectric voltage effect of [(SrTiO3)n/(SrTi0.8Nb0.2O3)m]20/LaAlO3 superlattices. Acta Physica Sinica, 2009, 58(5): 3497-3502. doi: 10.7498/aps.58.3497
    [15] Zou Ji-Jun, Chang Ben-Kang, Yang Zhi, Gao Pin, Qiao Jian-Liang, Zeng Yi-Ping. Stability of GaAs photocathodes under different intensities of illumination. Acta Physica Sinica, 2007, 56(10): 6109-6113. doi: 10.7498/aps.56.6109
    [16] Yu Yun-Peng, Lin Xuan-Ying, Lin Shun-Hui, Huang Rui. Influence of light exposure and applied bias on the conductivity of microcrystalline silicon films at room temperature. Acta Physica Sinica, 2006, 55(4): 2038-2043. doi: 10.7498/aps.55.2038
    [17] Xu Run, Shen Ming-Rong, Ge Shui-Bing. . Acta Physica Sinica, 2002, 51(5): 1139-1143. doi: 10.7498/aps.51.1139
    [18] Cui Da-Fu, Wang Huan-Hua, Dao Shou-Yu, Zhou Yue-Liang, ChenZheng Hao, Yang Guo-Zheng, Liu Feng-Qin, K .Ibrahim, Qian Hai-Jie. . Acta Physica Sinica, 2002, 51(1): 187-191. doi: 10.7498/aps.51.187
    [19] YU YU-DE, XIE SI-SHEN, H. BOYSEN. INVESTIGATION OF LaAlO3 CRYSTAL STRUCTURE. Acta Physica Sinica, 1993, 42(4): 605-609. doi: 10.7498/aps.42.605
    [20] TU JIN-HONG, ZHAN LI. DIFFRACTION AND INTERFERENCE EFFECT OF DOUBLE GRATINGS WITH A ROTATION-ANGLE UNDER PARTIALLY COHERENT ILLUMINATION. Acta Physica Sinica, 1991, 40(9): 1424-1424. doi: 10.7498/aps.40.1424
Metrics
  • Abstract views:  5888
  • PDF Downloads:  69
  • Cited By: 0
Publishing process
  • Received Date:  14 December 2018
  • Accepted Date:  20 January 2019
  • Available Online:  01 March 2019
  • Published Online:  20 March 2019

/

返回文章
返回