Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Crystal structure and optical properties of GaAs nanowires

Wang Peng-Hua Tang Ji-Long Kang Yu-Bin Fang Xuan Fang Dan Wang Deng-Kui Lin Feng-Yuan Wang Xiao-Hua Wei Zhi-Peng

Citation:

Crystal structure and optical properties of GaAs nanowires

Wang Peng-Hua, Tang Ji-Long, Kang Yu-Bin, Fang Xuan, Fang Dan, Wang Deng-Kui, Lin Feng-Yuan, Wang Xiao-Hua, Wei Zhi-Peng
PDF
HTML
Get Citation
  • Gallium arsenide (GaAs) nanowires are epitaxially grown on an N-type Si (111) substrate by molecular beam epitaxy according to self-catalysis growth mechanism. Testing the grown nanowires by scanning electron microscope, it is found that the nanowires have high verticality and good uniformity in length and diameter. Variable temperature photoluminescence (PL) spectroscopy is used on nanowires. The test results show that the two luminescence peaks P1 and P2 at 10 K are located at 1.493 eV and 1.516 eV, respectively, and it is inferred that it may be the luminescence caused by WZ/ZB miscible structure and the free exciton luminescence peak. These two peaks present red-shift with temperature increasing. The temperature change curve is obtained by fitting the Varshni formula. The variable power PL spectroscopy test finds that the peak position of P1 position is blue shifted with power increasing, but the peak position of the P2 remains unchanged. By fitting, it is found that the P1 peak position is linearly related to power to the power of 1/3, and it is judged that it may be type-II luminescence caused by WZ/ZB mixed phase structure. At the same time, the peak position of the P2 position is fitted and parameter α approximately equals 1.56, therefore P2 is a free exciton luminescence. A Raman spectrum test is performed on the nanowires, and an E2 phonon peak unique to the GaAs WZ structure is found from the spectrum. It is proved that the grown nanowires possess WZ/ZB mixed phase structures, and the hybrid phase structure of nanowires is more intuitively observed by high resolution transmission electron microscopy.
      Corresponding author: Tang Ji-Long, jl_tangcust@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11674038, 61704011, 61674021, 61574022), the Science and Technology Development Plan of Jilin Province, China (Grant Nos. 20160204074GX, 20160519007JH, 20160101255JC), and the Science and Technology Innovation Fund of Changchun University of Science and Technology, China (Grant Nos. XJJLG-2016-11, XJJLG-2016-14).
    [1]

    Dai X, Zhang S, Wang Z L, Adamo G, Liu H, Huang Y Z, Couteau C, Soci C 2014 Nano Lett. 14 2688Google Scholar

    [2]

    Farrell A C, Senanayake P, Meng X, Hsieh N Y, Huffaker D L 2017 Nano Lett. 17 2420Google Scholar

    [3]

    Cammi D, Rodiek B, Zimmermann K, Kück S, Voss T 2017 J. Mater. Res. 32 2464Google Scholar

    [4]

    Tchernycheva M, Lavenus P, Zhang H, Babichev A V, Jacopin G, Shahmohammadi M, Julien F H, Ciechonski R, Vescovi G, Kryliouk O 2014 Nano Lett. 14 2456Google Scholar

    [5]

    Hussain L, Karimi M, Berg A, Jain V, Borgström M T, Gustafsson A, Samuelson L, Pettersson H 2017 Nanotechnology 28 485205Google Scholar

    [6]

    Ullah A R, Meyer F, Gluschke J G, Naureen S, Caroff P, Krogstrup P, Nygård J, Micolich A P 2018 Nano Lett. 18 5673Google Scholar

    [7]

    Price A, Martinez A 2015 J. Appl. Phys. 117 164501Google Scholar

    [8]

    Yang W, Pan D, Shen R, Wang X, Zhao J, Chen Q 2018 Nanotechnology 29 415230

    [9]

    毛宏伟, 刘一先, 李富铭 1990 中国激光 17 538Google Scholar

    Mao H W, Liu Y X, Li F M 1990 Chin. J. Las. 17 538Google Scholar

    [10]

    Han N, Wang F, Hou J J, Yip S, Lin H, Fang M, Xiu F, Shi X L, Hung T F, Ho J C 2012 Cryst. Growth Des. 12 6243Google Scholar

    [11]

    夏宁, 方铉, 容天宇, 王登魁, 房丹, 唐吉龙, 王新伟, 王晓华, 李永峰, 姚斌, 魏志鹏 2018 中国激光 45 0603002

    Xia N, Fang X, Rong T Y, Wang D K, Fang D, Tang J L, Wang X W, Wang X H, Li Y F, Yao B, Wei Z P 2018 Chin. J. Las. 45 0603002

    [12]

    Glas F, Harmand J C, Patriarche G 2007 Phys. Rev. Lett. 99 146101Google Scholar

    [13]

    Hoang T B, Zhou H, Moses A F, Dheeraj D L, Helvoor A, Fimland B O, Weman H 2009 Mater. Res. Soc. Symp. Proc. 1144

    [14]

    Vainorius N, Jacobsson D, Lehmann S, Gustafsson A, Dick K A, Samuelson L, Pistol M E 2014 Phys. Rev. B 89 165423Google Scholar

    [15]

    Kinzel J B, Schülein F J, Weiß M, Janker L, Bühler D D, Heigl M, Rudolph D, Morkötter S, Döblinger M, Bichler M, Abstreiter G, Finley J J, Wixforth A, Koblmüller G, Abstreiter G 2016 ACS Nano 10 4942Google Scholar

    [16]

    Senichev A, Corfdir P, Brandt O, Ramsteiner M, Breuer S, Schilling J, Geelhaar L, Werner P 2018 Nano Res. 1 14

    [17]

    Mukherjee A, Ghosh S, Breuer S, Jahn U, Geelhaar L, Grahn H T 2017 J. Appl. Phys. 117 054308

    [18]

    Kim H, Ren D, Farrell A C, Huffaker D L 2018 Nanotechnology 29 085601Google Scholar

    [19]

    崔建功, 张霞, 颜鑫, 李军帅, 黄永清, 任晓敏 2014 物理学报 63 136103Google Scholar

    Cui J G, Zhang X, Yan X, Li J S, Huang Y Q, Ren X M 2014 Acta Phys. Sin. 63 136103Google Scholar

    [20]

    Liu Y, Peng Y, Guo J, La D, Xu Z 2018 AIP Adv. 8 055108Google Scholar

    [21]

    Zhou C, Zheng K, Liao Z M, Chen P P, Lu W, Zou J 2017 J. Mater. Chem. C 5 5257Google Scholar

    [22]

    Timofeeva M, Bouravleuv A, Cirlin G, Shtrom I, Soshnikov I, Reig Escalé M, Sergeyev A Grange R 2016 Nano Lett. 16 6290Google Scholar

    [23]

    Bussone G, Schäfer-Eberwein H, Dimakis E, Biermanns A, Carbone D, Tahraoui A, Geelhaar L, Bolívar P H, Schülli T U, Pietsch U 2015 Nano Lett. 15 981Google Scholar

    [24]

    Fontcuberta i Morral A, Colombo C, Abstreiter G, Arbiol J, Morante J R 2008 Appl. Phys. Lett. 92 063112Google Scholar

    [25]

    Bauer B, Rudolph A, Soda M, Fontcuberta i Morral A, Zweck J, Schuh D, Reiger E 2010 Nanotechnology 21 435601Google Scholar

    [26]

    Ramsteiner M, Brandt O, Kusch P, Breuer S, Reich S, Geelhaar L 2013 Appl. Phys. Lett. 103 043121Google Scholar

    [27]

    Jahn U, Lähnemann J, Pfüller C, Brandt O, Breuer S, Jenichen B, Ramsteiner M, Geelhaar L, Riechert H 2012 Phys. Rev. B 85 045323Google Scholar

    [28]

    Falcão B P, Leitão J P, Correia M R, Soares M R, Morales F M, Mánuel J M, Garcia R, Gustafsson A, Moreira M V B, de Oliveira A G, González J C 2013 J. Appl. Phys. 114 183508Google Scholar

    [29]

    Rudolph D, Schweickert L, Morkötter S, Loitsch B, Hertenberger S, Becker J, Bichler M, Abstreiter G, Finley J J, Koblmüller G 2013 Appl. Phys. Lett. 105 033111

    [30]

    Varshni Y P 1967 Physica 34 149Google Scholar

    [31]

    Chiu Y S, Ya M H, Su W S, Chen Y F 2002 J. Appl. Phys. 92 5810Google Scholar

    [32]

    Jin S, Zheng Y, Li A 1997 J. Appl. Phys. 82 3870Google Scholar

    [33]

    Fang X, Wei Z P, Chen R, Tang J L, Zhao H F, Zhang L G, Zhao D X, Fang D, Li J H, Fang F, Chu X Y, Wang X H 2015 ACS Appl. Mater. Inter. 7 10331Google Scholar

    [34]

    Begum N, Piccin M, Jabeen F, Bais G, Rubini S, Martelli F, Bhatti A S 2008 J. Appl. Phys. 104 104311Google Scholar

    [35]

    Spirkoska D, Arbiol J, Gustafsson A, Conesa-Boj S, Glas F, Zardo I, Heigoldt M, Gass M H, Bleloch A L, Estrade S, Kaniber M, Rossler J, Peiro F, Morante J R, Abstreiter G, Samuelson L, Fontcuberta i Morral A 2009 Phys. Rev. B 80 245325Google Scholar

  • 图 1  GaAs纳米线形貌及纳米线长度直径分布 (a) GaAs纳米线侧面SEM图像; (b) GaAs纳米线长度分布统计图; (c) GaAs纳米线平面SEM图像, 插图为纳米线形状; (d) GaAs纳米线直径分布统计图

    Figure 1.  The morphology, length, and diameter distribution of GaAs nanowires: (a) Side SEM image of GaAs nanowires; (b) GaAs nanowires length distribution; (c) plane SEM image of GaAs nanowires, inset is the shape of the nanowire; (d) GaAs nanowires diameter distribution

    图 2  GaAs纳米线变温PL光谱测试图 (a)发光峰位随温度10−140 K的变化; (b) P1, P2发光峰峰位随温度变化的拟合曲线

    Figure 2.  Variable power PL spectrum: (a) The change of luminescence peak position with temperature 10−140 K; (b) fitting curve of the peak position of P1 and P2 luminescence with the change of temperature

    图 3  变功率PL光谱测试图 (a)不同功率下PL光谱曲线, 插图为P2, P1峰强比随功率变化曲线; (b) P1峰位与P1/3的关系; (c) P2峰强与功率的关系

    Figure 3.  Variable power PL spectrum: (a) The PL spectral curve with different power is illustrated as the peak ratio of P2, P1 changing with power; (b) the relationship between P1 peak and P1/3; (c) the relationship between P2 peak intensity and power

    图 4  GaAs纳米线及GaAs衬底的Raman光谱图

    Figure 4.  Raman spectra of GaAs nanowires and GaAs substrate

    图 5  GaAs纳米线透射电子显微镜(TEM)图像 (a)低分辨TEM图像; (b)HRTEM图像; (c)为选区电子衍射图像

    Figure 5.  Transmission electron microscopy (TEM) image of GaAs nanowires: (a) The low resolution TEM; (b) the high resolution TEM; (c) the selected area electron diffraction image

  • [1]

    Dai X, Zhang S, Wang Z L, Adamo G, Liu H, Huang Y Z, Couteau C, Soci C 2014 Nano Lett. 14 2688Google Scholar

    [2]

    Farrell A C, Senanayake P, Meng X, Hsieh N Y, Huffaker D L 2017 Nano Lett. 17 2420Google Scholar

    [3]

    Cammi D, Rodiek B, Zimmermann K, Kück S, Voss T 2017 J. Mater. Res. 32 2464Google Scholar

    [4]

    Tchernycheva M, Lavenus P, Zhang H, Babichev A V, Jacopin G, Shahmohammadi M, Julien F H, Ciechonski R, Vescovi G, Kryliouk O 2014 Nano Lett. 14 2456Google Scholar

    [5]

    Hussain L, Karimi M, Berg A, Jain V, Borgström M T, Gustafsson A, Samuelson L, Pettersson H 2017 Nanotechnology 28 485205Google Scholar

    [6]

    Ullah A R, Meyer F, Gluschke J G, Naureen S, Caroff P, Krogstrup P, Nygård J, Micolich A P 2018 Nano Lett. 18 5673Google Scholar

    [7]

    Price A, Martinez A 2015 J. Appl. Phys. 117 164501Google Scholar

    [8]

    Yang W, Pan D, Shen R, Wang X, Zhao J, Chen Q 2018 Nanotechnology 29 415230

    [9]

    毛宏伟, 刘一先, 李富铭 1990 中国激光 17 538Google Scholar

    Mao H W, Liu Y X, Li F M 1990 Chin. J. Las. 17 538Google Scholar

    [10]

    Han N, Wang F, Hou J J, Yip S, Lin H, Fang M, Xiu F, Shi X L, Hung T F, Ho J C 2012 Cryst. Growth Des. 12 6243Google Scholar

    [11]

    夏宁, 方铉, 容天宇, 王登魁, 房丹, 唐吉龙, 王新伟, 王晓华, 李永峰, 姚斌, 魏志鹏 2018 中国激光 45 0603002

    Xia N, Fang X, Rong T Y, Wang D K, Fang D, Tang J L, Wang X W, Wang X H, Li Y F, Yao B, Wei Z P 2018 Chin. J. Las. 45 0603002

    [12]

    Glas F, Harmand J C, Patriarche G 2007 Phys. Rev. Lett. 99 146101Google Scholar

    [13]

    Hoang T B, Zhou H, Moses A F, Dheeraj D L, Helvoor A, Fimland B O, Weman H 2009 Mater. Res. Soc. Symp. Proc. 1144

    [14]

    Vainorius N, Jacobsson D, Lehmann S, Gustafsson A, Dick K A, Samuelson L, Pistol M E 2014 Phys. Rev. B 89 165423Google Scholar

    [15]

    Kinzel J B, Schülein F J, Weiß M, Janker L, Bühler D D, Heigl M, Rudolph D, Morkötter S, Döblinger M, Bichler M, Abstreiter G, Finley J J, Wixforth A, Koblmüller G, Abstreiter G 2016 ACS Nano 10 4942Google Scholar

    [16]

    Senichev A, Corfdir P, Brandt O, Ramsteiner M, Breuer S, Schilling J, Geelhaar L, Werner P 2018 Nano Res. 1 14

    [17]

    Mukherjee A, Ghosh S, Breuer S, Jahn U, Geelhaar L, Grahn H T 2017 J. Appl. Phys. 117 054308

    [18]

    Kim H, Ren D, Farrell A C, Huffaker D L 2018 Nanotechnology 29 085601Google Scholar

    [19]

    崔建功, 张霞, 颜鑫, 李军帅, 黄永清, 任晓敏 2014 物理学报 63 136103Google Scholar

    Cui J G, Zhang X, Yan X, Li J S, Huang Y Q, Ren X M 2014 Acta Phys. Sin. 63 136103Google Scholar

    [20]

    Liu Y, Peng Y, Guo J, La D, Xu Z 2018 AIP Adv. 8 055108Google Scholar

    [21]

    Zhou C, Zheng K, Liao Z M, Chen P P, Lu W, Zou J 2017 J. Mater. Chem. C 5 5257Google Scholar

    [22]

    Timofeeva M, Bouravleuv A, Cirlin G, Shtrom I, Soshnikov I, Reig Escalé M, Sergeyev A Grange R 2016 Nano Lett. 16 6290Google Scholar

    [23]

    Bussone G, Schäfer-Eberwein H, Dimakis E, Biermanns A, Carbone D, Tahraoui A, Geelhaar L, Bolívar P H, Schülli T U, Pietsch U 2015 Nano Lett. 15 981Google Scholar

    [24]

    Fontcuberta i Morral A, Colombo C, Abstreiter G, Arbiol J, Morante J R 2008 Appl. Phys. Lett. 92 063112Google Scholar

    [25]

    Bauer B, Rudolph A, Soda M, Fontcuberta i Morral A, Zweck J, Schuh D, Reiger E 2010 Nanotechnology 21 435601Google Scholar

    [26]

    Ramsteiner M, Brandt O, Kusch P, Breuer S, Reich S, Geelhaar L 2013 Appl. Phys. Lett. 103 043121Google Scholar

    [27]

    Jahn U, Lähnemann J, Pfüller C, Brandt O, Breuer S, Jenichen B, Ramsteiner M, Geelhaar L, Riechert H 2012 Phys. Rev. B 85 045323Google Scholar

    [28]

    Falcão B P, Leitão J P, Correia M R, Soares M R, Morales F M, Mánuel J M, Garcia R, Gustafsson A, Moreira M V B, de Oliveira A G, González J C 2013 J. Appl. Phys. 114 183508Google Scholar

    [29]

    Rudolph D, Schweickert L, Morkötter S, Loitsch B, Hertenberger S, Becker J, Bichler M, Abstreiter G, Finley J J, Koblmüller G 2013 Appl. Phys. Lett. 105 033111

    [30]

    Varshni Y P 1967 Physica 34 149Google Scholar

    [31]

    Chiu Y S, Ya M H, Su W S, Chen Y F 2002 J. Appl. Phys. 92 5810Google Scholar

    [32]

    Jin S, Zheng Y, Li A 1997 J. Appl. Phys. 82 3870Google Scholar

    [33]

    Fang X, Wei Z P, Chen R, Tang J L, Zhao H F, Zhang L G, Zhao D X, Fang D, Li J H, Fang F, Chu X Y, Wang X H 2015 ACS Appl. Mater. Inter. 7 10331Google Scholar

    [34]

    Begum N, Piccin M, Jabeen F, Bais G, Rubini S, Martelli F, Bhatti A S 2008 J. Appl. Phys. 104 104311Google Scholar

    [35]

    Spirkoska D, Arbiol J, Gustafsson A, Conesa-Boj S, Glas F, Zardo I, Heigoldt M, Gass M H, Bleloch A L, Estrade S, Kaniber M, Rossler J, Peiro F, Morante J R, Abstreiter G, Samuelson L, Fontcuberta i Morral A 2009 Phys. Rev. B 80 245325Google Scholar

  • [1] Zhang Mao-Di, Jiao Chen-Yin, Wen Ting, Li Jing, Pei Sheng-Hai, Wang Zeng-Hui, Xia Juan. In-situ high pressure polarized Raman spectroscopy of rhenium disulfide. Acta Physica Sinica, 2022, 71(14): 140702. doi: 10.7498/aps.71.20220053
    [2] Li Jia-Hong, Sun Gui-Hua, Zhang Qing-Li, Wang Xiao-Fei, Zhang De-Ming, Liu Wen-Peng, Gao Jin-Yun, Zheng Li-Li, Han Song, Chen Zhao, Yin Shao-Tang. Effect of annealing atmosphere on the structure and spectral properties of GdScO3 and Yb:GdScO3 crystals. Acta Physica Sinica, 2022, 71(16): 164206. doi: 10.7498/aps.71.20220196
    [3] Kang Yu-Bin, Tang Ji-Long, Li Ke-Xue, Li Xiang, Hou Xiao-Bing, Chu Xue-Ying, Lin Feng-Yuan, Wang Xiao-Hua, Wei Zhi-Peng. Studies of Be, Si doping regulated GaAs nanowires for phase transition and optical properties. Acta Physica Sinica, 2021, 70(20): 207804. doi: 10.7498/aps.70.20210782
    [4] Yuan Hui-Bo, Li Lin, Zeng Li-Na, Zhang Jing, Li Zai-Jin, Qu Yi, Yang Xiao-Tian, Chi Yao-Dan, Ma Xiao-Hui, Liu Guo-Jun. Morphology characterization and growth mechanism of Au-catalyzed GaAs and GaAs/InGaAs nanowires. Acta Physica Sinica, 2018, 67(18): 188101. doi: 10.7498/aps.67.20180220
    [5] Zhang Yong, Shi Yi-Min, Bao You-Zhen, Yu Xia, Xie Zhong-Xiang, Ning Feng. Effect of surface passivation on the electronic properties of GaAs nanowire:A first-principle study. Acta Physica Sinica, 2017, 66(19): 197302. doi: 10.7498/aps.66.197302
    [6] Zhang Li, Zheng Hai-Yang, Wang Ying-Ping, Ding Lei, Fang Li. Characteristics of Raman spectrum from stand-off detection. Acta Physica Sinica, 2016, 65(5): 054206. doi: 10.7498/aps.65.054206
    [7] Qiao Xiao-Fen, Li Xiao-Li, Liu He-Nan, Shi Wei, Liu Xue-Lu, Wu Jiang-Bin, Tan Ping-Heng. Periodic oscillation in the reflection and photoluminescence spectra of suspended two-dimensional crystal flakes. Acta Physica Sinica, 2016, 65(13): 136801. doi: 10.7498/aps.65.136801
    [8] Zhou Hai-Liang, Gu Qing-Tian, Zhang Qing-Hua, Liu Bao-An, Zhu Li-Li, Zhang Li-Song, Zhang Fang, Xu Xin-Guang, Wang Zheng-Ping, Sun Xun, Zhao Xian. Raman spectroscopic study on the micro-structure of NH4H2PO4 and ND4D2PO4 crystals. Acta Physica Sinica, 2015, 64(19): 197801. doi: 10.7498/aps.64.197801
    [9] Cui Jian-Gong, Zhang Xia, Yan Xin, Li Jun-Shuai, Huang Yong-Qing, Ren Xiao-Min. Selective-area growth of GaAs and GaAs/InxGa1-xAs/GaAs nanowires by MOCVD. Acta Physica Sinica, 2014, 63(13): 136103. doi: 10.7498/aps.63.136103
    [10] Chen Yuan-Zheng, Li Shuo, Li Liang, Men Zhi-Wei, Li Zhan-Long, Sun Cheng-Lin, Li Zuo-Wei, Zhou Mi. Study of phase transition of HoVO4 under high pressure by Raman scattering and ab initio calculations. Acta Physica Sinica, 2013, 62(24): 246101. doi: 10.7498/aps.62.246101
    [11] Zhou Mi, Li Zhan-Long, Lu Guo-Hui, Li Dong-Fei, Sun Cheng-Lin, Gao Shu-Qin, Li Zuo-Wei. High pressure Raman investigation on the Fermi resonance of biphenyl. Acta Physica Sinica, 2011, 60(5): 050702. doi: 10.7498/aps.60.050702
    [12] Wang Li-Hong, You Jing-Lin, Wang Yuan-Yuan, Zheng Shao-Bo, Simon Patrick, Hou Min, Ji Zi-Fang. Temperature dependent Raman spectra and micro-structure study of hexagonal MgTiO3 crystal. Acta Physica Sinica, 2011, 60(10): 104209. doi: 10.7498/aps.60.104209
    [13] Niu Hua-Lei, Li Xiao-Na, Hu Bing, Dong Chuang, Jiang Xin. Room-temperature photoluminescence analysis of nano-β-FeSi2/a-Si multilayer films. Acta Physica Sinica, 2009, 58(6): 4117-4122. doi: 10.7498/aps.58.4117
    [14] Ding Cai-Rong, Wang Bing, Yang Guo-Wei, Wang He-Zhou. High quality SnO2 crystals grown with catalyst-assistance and study on their photoluminescent spectroscopy. Acta Physica Sinica, 2007, 56(3): 1775-1778. doi: 10.7498/aps.56.1775
    [15] Qin Xiu-Juan, Shao Guang-Jie, Liu Ri-Ping, Wang Wen-Kui, Yao Yu-Shu, Meng Hui-Min. Preparation and Raman spectra of high quality ZnO nano-bulk materials. Acta Physica Sinica, 2006, 55(7): 3760-3765. doi: 10.7498/aps.55.3760
    [16] Xu Cun-Ying, Zhang Peng-Xiang, Yan Lei. Blue shift of Raman peaks of coated BaTiO3 nanoparticles. Acta Physica Sinica, 2005, 54(11): 5089-5092. doi: 10.7498/aps.54.5089
    [17] Bai Ying, Lan Yan-Na, Mo Yu-Jun. Temperature measurement from the Raman spectra of porous silicon. Acta Physica Sinica, 2005, 54(10): 4654-4658. doi: 10.7498/aps.54.4654
    [18] Ding Shuo, Liu Yu-Long, G. G. Siu. Raman study of SnO2 nanograins under different annealing temperature. Acta Physica Sinica, 2005, 54(9): 4416-4421. doi: 10.7498/aps.54.4416
    [19] Ding Pei, Liang Er-Jun, Zhang Hong-Rui, Liu Yi-Zhen, Liu Hui, Guo Xin-Yong, Du Zu-Liang. Growth mechanism and Raman spectroscopic study of “interlinked-cone" shaped CNx nanotubes. Acta Physica Sinica, 2003, 52(1): 237-241. doi: 10.7498/aps.52.237
    [20] Dong Yan-Feng, Li Qing-Shan. . Acta Physica Sinica, 2002, 51(7): 1645-1648. doi: 10.7498/aps.51.1645
Metrics
  • Abstract views:  11648
  • PDF Downloads:  137
  • Cited By: 0
Publishing process
  • Received Date:  30 November 2018
  • Accepted Date:  25 February 2019
  • Available Online:  01 April 2019
  • Published Online:  20 April 2019

/

返回文章
返回