Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of Se substitution for Te on electrical and thermal transport properties of BiCuTeO

Huang Ping You Li Liang Xing Zhang Ji-Ye Luo Jun

Citation:

Effects of Se substitution for Te on electrical and thermal transport properties of BiCuTeO

Huang Ping, You Li, Liang Xing, Zhang Ji-Ye, Luo Jun
PDF
HTML
Get Citation
  • Recently, layered oxychalcogenide has attracted significant scientific attention because of its intriguing electronic properties, intrinsically low thermal conductivity and, correspondingly, outstanding thermoelectric properties, of which the BiCuSeO possesses the best thermoelectric performance ever reported. For instance, the optimized zT value of BiCuSeO system reaches 1.5 at 873 K through dual-doping approach. Such a zT value is comparable to those of the state-of-art p-type lead chalcogenide thermoelectric materials. However, comparing with BiCuSeO compound, little effort has been devoted to the isomorphic analogue BiCuTeO. On the one hand, the BiCuTeO has a pretty small band gap (0.4 eV) which limits its working temperature range. On the other hand, numerous intrinsic Cu vacancies are present in BiCuTeO due to the weak Cu-Te chemical bonding, leading to an excessive carrier concentration. Thus, further increasing carrier concentration through doping will lead to a deterioration of electrical transport properties and thus reduce the zT value. Herein, we choose Se and partially substitute it for Te in the BiCuTeO to enlarge the band gap and reduce intrinsic Cu vacancies by strengthening the chemical bonding in the conductive layers. By combining solid-phase reaction with hot-pressed sintering, the BiCuTe1–xSexO (x = 0, 0.1, 0.2, 0.3, 0.4) bulk thermoelectric materials are prepared, and their microscopic morphology and thermoelectric transport properties are systematically investigated. Our experimental results show that the substitution of Se for part of Te results in strengthening chemical bonding in the conducting layer, enlarging the band gap, increasing the carrier effective mass, reducing the carrier concentration, and enhancing the carrier scattering. Therefore, the electrical conductivity dramatically decreases but the Seebeck coefficient significantly increases with Se content increasing, leading to the decrease of thermoelectric power factor. Furthermore, a slight reduction of the total thermal conductivity is realized by Se alloying due to the decrease of the electronic thermal conductivity. Consequently, the dimensionless figure of merit zT decreases with the Se content increasing because electrical transport properties are deteriorated seriously. Finally, the zT value of 0.3 at room temperature and 0.7 at 723 K are achieved for the sample with x = 0.1, indicating that the Se substituted BiCuTeO sample can still maintain comparative zT values in a wide temperature range. Considering that the effective mass of BiCuTeO is significantly increased by Se alloying, the thermoelectric performance of BiCuTe1–xSexO compound might be further improved by optimizing the carrier concentration.
      Corresponding author: Luo Jun, junluo@shu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51772186, 51632005).
    [1]

    Snyder G J, Toberer E S 2008 Nat. Mater. 7 105Google Scholar

    [2]

    He J, Tritt T M 2017 Science 357 eaak9997Google Scholar

    [3]

    Luo J, You L, Zhang J Y, Guo K, Zhu H T, Gu L, Yang Z Z, Li X, Yang J, Zhang W Q 2017 ACS Appl. Mater. Interfaces 9 8729Google Scholar

    [4]

    Pei Y Z, Shi X Y, LaLonde A, Wang H, Chen L D, Snyder G J 2011 Nature 473 66Google Scholar

    [5]

    Heremans J P, Jovovic V, Toberer E S, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S, Snyder G J 2008 Science 321 554Google Scholar

    [6]

    Biswas K, He J Q, Blum I D, Wu C I, Hogan T P, Seidman D N, Dravid V P, Kanatzidis M G 2012 Nature 489 414Google Scholar

    [7]

    You L, Liu Y F, Li X, Nan P F, Ge B H, Jiang Y, Luo P F, Pan S S, Pei Y Z, Zhang W Q, Snyder G J, Yang J, Zhang J Y, Luo J 2018 Energy Environ. Sci. 11 1848Google Scholar

    [8]

    Zhou W X, Chen K Q 2015 Carbon 85 24Google Scholar

    [9]

    Chen X K, Xie Z X, Zhou W X, Tang L M, Chen K Q 2016 Appl. Phys. Lett. 109 023101Google Scholar

    [10]

    Chen X K, Liu J, Peng Z H, Du D, Chen K Q 2017 Appl. Phys. Lett. 110 091907Google Scholar

    [11]

    Lin S Q, Li W, Li S S, Zhang X Y, Chen Z W, Xu Y D, Chen Y, Pei Y Z 2017 Joule 1 816Google Scholar

    [12]

    Li J, Sui J H, Pei Y L, Barreteau C, Berardan D, Dragoe N, Cai W, He J Q, Zhao L D 2012 Energy Environ. Sci. 5 8543Google Scholar

    [13]

    Barreteau C, Berardan D, Amzallag E, Zhao L D, Dragoe N 2012 Chem. Mater. 24 3168Google Scholar

    [14]

    Pei Y L, He J Q, Li J F, Li F, Liu Q J, Pan W, Barreteau C, Berardan D, Dragoe N, Zhao L D 2013 NPG Asia Mater. 5 e47Google Scholar

    [15]

    Li J, Sui J H, Barreteau C, Berardan D, Dragoe N, Cai W, Pei Y L, Zhao L D 2013 J. Alloys Compd. 551 649Google Scholar

    [16]

    Lan J L, Liu Y C, Zhan B, Lin Y H, Zhang B P, Yuan X, Zhang W Q, Xu W, Nan C W 2013 Adv. Mater. 25 5086Google Scholar

    [17]

    Liu Y C, Zheng Y H, Zhan B, Chen K, Butt S, Zhang B P, Lin Y H 2015 J. Eur. Ceram. Soc. 35 845Google Scholar

    [18]

    Pei Y L, Wu H J, Wu D, Zheng F S, He J Q 2014 J. Am. Chem. Soc. 136 13902Google Scholar

    [19]

    Sui J H, Li J, He J Q, Pei Y L, Berardan D, Wu H J, Dragoe N, Cai W, Zhao L D 2013 Energy Environ. Sci. 6 2916Google Scholar

    [20]

    Liu Y, Lan J L, Xu W, Liu Y C, Pei Y L, Cheng B, Liu D B, Lin Y H, Zhao L D 2013 Chem. Commun. 49 8075Google Scholar

    [21]

    Pan L, Lang Y D, Zhao L, Berardan D, Amzallag E, Xu C, Gu Y F, Chen C C, Zhao L D, Shen X D, Lyu Y N, Lu C H, Wang Y F 2018 J. Mater. Chem. A 6 13340Google Scholar

    [22]

    Liu Y, Zhao L D, Zhu Y, Liu Y, Li F, Yu M, Liu D B, Xu W, Lin Y H, Nan C W 2016 Adv. Energy Mater. 6 1502423Google Scholar

    [23]

    Vaqueiro P, Guelou G, Stec M, Guilmeau E, Powell A V 2013 J. Mater. Chem. A 1 520Google Scholar

    [24]

    An T H, Lim Y S, Choi H S, Seo W S, Park C H, Kim G R, Park C, Lee C H, Shim J H 2014 J. Mater. Chem. A 2 19759Google Scholar

    [25]

    An T H, Lim Y S, Seo W S, Park C H, Yoo M D, Park C, Lee C H, Shim J H 2017 J. Electron. Mater. 46 2717Google Scholar

    [26]

    Barreteau C, Berardan D, Zhao L D, Dragoe N 2013 J. Mater. Chem. A 1 2921Google Scholar

    [27]

    Pichanusakorn P, Bandaru P 2010 Mater. Sci. Eng., R 67 19Google Scholar

    [28]

    Ren G K, Wang S Y, Zhu Y C, Ventura K J, Tan X, Xu W, Lin Y H, Yang J H, Nan C W 2017 Energy Environ. Sci. 10 1590Google Scholar

    [29]

    Lee C, An T H, Gordon E E, Ji H S, Park C, Shim J H, Lim Y S, Whangbo M H 2017 Chem. Mater. 29 2348Google Scholar

    [30]

    Ul Islam A K M F, Helal M A, Liton M N H, Kamruzzaman M, Islam H M T 2017 Indian J. Phys. 91 403Google Scholar

    [31]

    Wang H, LaLonde A D, Pei Y Z, Snyder G J 2013 Adv. Funct. Mater. 23 1586Google Scholar

  • 图 1  BiCuTe1–xSexO (x = 0, 0.1, 0.2, 0.3和0.4) 热压样品的 (a) XRD图谱; (b)晶胞体积V; (c) 晶格常数c; (d) 晶格常数a. 图(a) 中提供的BiCuTeO标准图谱为文献精修数据计算所得[23]; 图(b)—图(d) 中实线为线性拟合结果

    Figure 1.  (a) XRD patterns of the hot-pressed BiCuTe1–xSexO (x = 0, 0.1, 0.2, 0.3, 0.4) samples; (b) cell volume V; (c) lattice parameter c; (d) lattice parameter a as a function of the Se content. The standard XRD pattern of BiCuTeO in (a) is calculated from the Rietveld refinement data given by literature[23]. The solid lines in (b)−(d) are the linear fitting results of the experiment data.

    图 2  BiCuTe1–xSexO (x = 0, 0.2和0.4) 抛光样品的SEM图像(插图为相应的EDS面扫描元素分布图像)((a)—(c))以及断面SEM形貌图((d)—(f))

    Figure 2.  SEM images of polished samples (the insets are the EDS elemental mapping images) ((a)—(c)) and SEM images of fracture surfaces ((d)−(f))for BiCuTe1–xSexO (x = 0, 0.2, 0.4) compounds.

    图 3  BiCuTe1-xSexO样品 (x = 0, 0.1, 0.2, 0.3和0.4) 的 (a) 电导率σ; (b) Seebeck系数S; (c) 功率因子S2σ随温度的变化曲线; (d) 样品的载流子浓度n和迁移率${\mu}$随Se含量的变化曲线. 图(a)—(c) 中短划线和点划线分别为文献中未掺杂的BiCuTeO[23]与BiCuSeO[14]的电输运性能

    Figure 3.  Temperature dependent electrical transport properties of BiCuTe1-xSexO (x = 0, 0.1, 0.2, 0.3, 0.4) samples: (a) Electrical conductivity σ; (b) Seebeck coefficients S; (c) power factor S2σ. (d) Se cotent dependence of room temperature hole concentration n and mobility ${\mu}$. The dashed and dotted lines in (a)−(c) represent the electrical transport properties of undoped BiCuSeO[14] and BiCuTeO[23], respectively.

    图 4  (a) 重掺杂BiCuSeO[14,16,28]和BiCuTeO[24,25]的载流子有效质量m*随载流子浓度n的变化曲线; (b) Se掺杂BiCuTeO(本工作)和Te掺杂BiCuSeO[28]的载流子有效质量m*随载流子浓度n的变化曲线

    Figure 4.  Hole concentration n dependent effective mass m* of (a) Heavily doped BiCuSeO[14,16,28] and BiCuTeO[24,25]; (b) Se doped BiCuTeO (this work) and Te doped BiCuSeO[28].

    图 5  BiCuTe1–xSexO (x = 0, 0.1, 0.2, 0.3和0.4) 样品的(a) 总热导率和(b) 电子热导率、晶格热导率与双极扩散热导率之和随温度的变化曲线. 图(a)中短划线和点划线分别为未掺杂的BiCuTeO[23]与BiCuSeO[14]的热输运性能

    Figure 5.  Temperature dependent thermal transport properties of BiCuTe1–xSexO (x = 0, 0.1, 0.2, 0.3, 0.4) samples: (a) Total thermal conductivity; (b) the combination of lattice and bipolar thermal conductivity, and the electronic thermal conductivity. The dashed and dotted lines in (a) represent the total thermal conductivities of undoped BiCuTeO[23] and BiCuSeO[14], respectively.

    图 6  BiCuTe1–xSexO (x = 0, 0.1, 0.2, 0.3和0.4)样品的zT值随温度的变化曲线. 短划线和点划线分别为未掺杂的BiCuTeO[23]与BiCuSeO[14]的zT值

    Figure 6.  Temperature dependent zT values of BiCuTe1–xSexO (x = 0, 0.1, 0.2, 0.3, 0.4) samples. The dashed and dotted lines represent the zT values of undoped BiCuTeO[23] and BiCuSeO[14], respectively.

    表 1  室温下BiCuTe1–xSexO (x = 0, 0.1, 0.2, 0.3和0.4) 样品的载流子浓度 (n)、迁移率 (${\mu}$)、电导率 (σ) 以及载流子有效质量 (m*)

    Table 1.  Room temperature carrier concentrations (n), Hall mobilities (${\mu}$), electrical conductivities (σ) and effective masses of BiCuTe1–xSexO (x = 0, 0.1, 0.2, 0.3, 0.4) samples.

    样品载流子浓度n/cm–3迁移率${\mu}$/cm2·V–1·s–1电导率σ/Sm–1m*/m0
    BiCuTeO8.4 × 101928.23.81 × 1042.42
    BiCuTe0.9Se0.1O7.0 × 101911.81.32 × 1042.94
    BiCuTe0.8Se0.2O6.3 × 10197.97.89 × 1033.07
    BiCuTe0.7Se0.3O5.1 × 10194.03.31 × 1033.2
    BiCuTe0.6Se0.4O5.8 × 10191.91.73 × 1034.28
    DownLoad: CSV
  • [1]

    Snyder G J, Toberer E S 2008 Nat. Mater. 7 105Google Scholar

    [2]

    He J, Tritt T M 2017 Science 357 eaak9997Google Scholar

    [3]

    Luo J, You L, Zhang J Y, Guo K, Zhu H T, Gu L, Yang Z Z, Li X, Yang J, Zhang W Q 2017 ACS Appl. Mater. Interfaces 9 8729Google Scholar

    [4]

    Pei Y Z, Shi X Y, LaLonde A, Wang H, Chen L D, Snyder G J 2011 Nature 473 66Google Scholar

    [5]

    Heremans J P, Jovovic V, Toberer E S, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S, Snyder G J 2008 Science 321 554Google Scholar

    [6]

    Biswas K, He J Q, Blum I D, Wu C I, Hogan T P, Seidman D N, Dravid V P, Kanatzidis M G 2012 Nature 489 414Google Scholar

    [7]

    You L, Liu Y F, Li X, Nan P F, Ge B H, Jiang Y, Luo P F, Pan S S, Pei Y Z, Zhang W Q, Snyder G J, Yang J, Zhang J Y, Luo J 2018 Energy Environ. Sci. 11 1848Google Scholar

    [8]

    Zhou W X, Chen K Q 2015 Carbon 85 24Google Scholar

    [9]

    Chen X K, Xie Z X, Zhou W X, Tang L M, Chen K Q 2016 Appl. Phys. Lett. 109 023101Google Scholar

    [10]

    Chen X K, Liu J, Peng Z H, Du D, Chen K Q 2017 Appl. Phys. Lett. 110 091907Google Scholar

    [11]

    Lin S Q, Li W, Li S S, Zhang X Y, Chen Z W, Xu Y D, Chen Y, Pei Y Z 2017 Joule 1 816Google Scholar

    [12]

    Li J, Sui J H, Pei Y L, Barreteau C, Berardan D, Dragoe N, Cai W, He J Q, Zhao L D 2012 Energy Environ. Sci. 5 8543Google Scholar

    [13]

    Barreteau C, Berardan D, Amzallag E, Zhao L D, Dragoe N 2012 Chem. Mater. 24 3168Google Scholar

    [14]

    Pei Y L, He J Q, Li J F, Li F, Liu Q J, Pan W, Barreteau C, Berardan D, Dragoe N, Zhao L D 2013 NPG Asia Mater. 5 e47Google Scholar

    [15]

    Li J, Sui J H, Barreteau C, Berardan D, Dragoe N, Cai W, Pei Y L, Zhao L D 2013 J. Alloys Compd. 551 649Google Scholar

    [16]

    Lan J L, Liu Y C, Zhan B, Lin Y H, Zhang B P, Yuan X, Zhang W Q, Xu W, Nan C W 2013 Adv. Mater. 25 5086Google Scholar

    [17]

    Liu Y C, Zheng Y H, Zhan B, Chen K, Butt S, Zhang B P, Lin Y H 2015 J. Eur. Ceram. Soc. 35 845Google Scholar

    [18]

    Pei Y L, Wu H J, Wu D, Zheng F S, He J Q 2014 J. Am. Chem. Soc. 136 13902Google Scholar

    [19]

    Sui J H, Li J, He J Q, Pei Y L, Berardan D, Wu H J, Dragoe N, Cai W, Zhao L D 2013 Energy Environ. Sci. 6 2916Google Scholar

    [20]

    Liu Y, Lan J L, Xu W, Liu Y C, Pei Y L, Cheng B, Liu D B, Lin Y H, Zhao L D 2013 Chem. Commun. 49 8075Google Scholar

    [21]

    Pan L, Lang Y D, Zhao L, Berardan D, Amzallag E, Xu C, Gu Y F, Chen C C, Zhao L D, Shen X D, Lyu Y N, Lu C H, Wang Y F 2018 J. Mater. Chem. A 6 13340Google Scholar

    [22]

    Liu Y, Zhao L D, Zhu Y, Liu Y, Li F, Yu M, Liu D B, Xu W, Lin Y H, Nan C W 2016 Adv. Energy Mater. 6 1502423Google Scholar

    [23]

    Vaqueiro P, Guelou G, Stec M, Guilmeau E, Powell A V 2013 J. Mater. Chem. A 1 520Google Scholar

    [24]

    An T H, Lim Y S, Choi H S, Seo W S, Park C H, Kim G R, Park C, Lee C H, Shim J H 2014 J. Mater. Chem. A 2 19759Google Scholar

    [25]

    An T H, Lim Y S, Seo W S, Park C H, Yoo M D, Park C, Lee C H, Shim J H 2017 J. Electron. Mater. 46 2717Google Scholar

    [26]

    Barreteau C, Berardan D, Zhao L D, Dragoe N 2013 J. Mater. Chem. A 1 2921Google Scholar

    [27]

    Pichanusakorn P, Bandaru P 2010 Mater. Sci. Eng., R 67 19Google Scholar

    [28]

    Ren G K, Wang S Y, Zhu Y C, Ventura K J, Tan X, Xu W, Lin Y H, Yang J H, Nan C W 2017 Energy Environ. Sci. 10 1590Google Scholar

    [29]

    Lee C, An T H, Gordon E E, Ji H S, Park C, Shim J H, Lim Y S, Whangbo M H 2017 Chem. Mater. 29 2348Google Scholar

    [30]

    Ul Islam A K M F, Helal M A, Liton M N H, Kamruzzaman M, Islam H M T 2017 Indian J. Phys. 91 403Google Scholar

    [31]

    Wang H, LaLonde A D, Pei Y Z, Snyder G J 2013 Adv. Funct. Mater. 23 1586Google Scholar

  • [1] Chen Shang-Feng, Sun Nai-Kun, Zhang Xian-Min, Wang Kai, Li Wu, Han Yan, Wu Li-Jun, Dai Qin. Preparation and thermoelectric properties of Mn3As2-doped Cd3As2 nanostructures. Acta Physica Sinica, 2022, 71(18): 187201. doi: 10.7498/aps.71.20220584
    [2] Hu Wei-Wei, Sun Jin-Chang, Zhang Yu, Gong Yue, Fan Yu-Ting, Tang Xin-Feng, Tan Gang-Jian. Improving thermoelectric performance of GeSe compound by crystal structure engineering. Acta Physica Sinica, 2022, 71(4): 047101. doi: 10.7498/aps.71.20211843
    [3] Zi Peng, Bai Hui, Wang Cong, Wu Yu-Tian, Ren Pei-An, Tao Qi-Rui, Wu Jin-Song, Su Xian-Li, Tang Xin-Feng. Structure and thermoelectric performance of AgyIn3.33–y/3Se5 compounds. Acta Physica Sinica, 2022, 71(11): 117101. doi: 10.7498/aps.71.20220179
    [4] Fan Ren-Jie, Jiang Xian-Yan, Tao Qi-Rui, Mei Qi-Cai, Tang Ying-Fei, Chen Zhi-Quan, Su Xian-Li, Tang Xin-Feng. Structure and thermoelectric properties of In1+xTe compounds. Acta Physica Sinica, 2021, 70(13): 137102. doi: 10.7498/aps.70.20210041
    [5] Crystal Structure Engineering as a Means of Boosting the Thermoelectric Performance of GeSe. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211843
    [6] Wang Mo-Fan, Ying Peng-Zhan, Li Xie, Cui Jiao-Lin. Polycomponent doping improved thermoelectric performance of Cu3SbSe4-based solid solutions. Acta Physica Sinica, 2021, 70(10): 107303. doi: 10.7498/aps.70.20202094
    [7] Zou Ping, Lü Dan, Xu Gui-Ying. Microstructure and thermoelectric property of (Bi1–xTbx)2(Te0.9Se0.1)3 fabricated by high pressure sintering technique. Acta Physica Sinica, 2020, 69(5): 057201. doi: 10.7498/aps.69.20191561
    [8] Sun Zheng, Chen Shao-Ping, Yang Jiang-Feng, Meng Qing-Sen, Cui Jiao-Lin. Thermoelectric properties of chalcopyrite Cu3Ga5Te9 with Sb non-isoelectronic substitution for Cu and Te. Acta Physica Sinica, 2014, 63(5): 057201. doi: 10.7498/aps.63.057201
    [9] Li Zhi-Min, Shi Jian-Zhang, Wei Xiao-Hei, Li Pei-Xian, Huang Yun-Xia, Li Gui-Fang, Hao Yue. First principles calculation of electronic structure for Al-doped 3C-SiC and its microwave dielectric properties. Acta Physica Sinica, 2012, 61(23): 237103. doi: 10.7498/aps.61.237103
    [10] Zhang He, Luo Jun, Zhu Hang-Tian, Liu Quan-Lin, Liang Jing-Kui, Rao Guang-Hui. Phase stability, crystal structure and thermoelectric properties of Cu doped AgSbTe2. Acta Physica Sinica, 2012, 61(8): 086101. doi: 10.7498/aps.61.086101
    [11] Ma Xiao-Feng, Wang Yi-Zhe, Zhou Cheng-Yue. Structural and optical properties of a-Si ∶H/SiO2 multiple quantum wells. Acta Physica Sinica, 2011, 60(6): 068102. doi: 10.7498/aps.60.068102
    [12] Liu Jian, Wang Chun-Lei, Su Wen-Bin, Wang Hong-Chao, Zhang Jia-Liang, Mei Liang-Mo. Influence of niobium doping on crystal structure and thermoelectric property of reduced titanium dioxide ceramics. Acta Physica Sinica, 2011, 60(8): 087204. doi: 10.7498/aps.60.087204
    [13] Zhou Long, Li Han, Su Xian-Li, Tang Xin-Feng. Effects of In doping on crystal structure and thermoelectric properties of n-type skutterudites. Acta Physica Sinica, 2010, 59(10): 7219-7224. doi: 10.7498/aps.59.7219
    [14] Guo Quan-Sheng, Li Han, Su Xian-Li, Tang Xin-Feng. Microstructure and themoelectric properties of p-type filled skutterudite Ce0.3Fe1.5Co2.5Sb12 prepared by melt-spinning method. Acta Physica Sinica, 2010, 59(9): 6666-6672. doi: 10.7498/aps.59.6666
    [15] Wang Shan-Yu, Xie Wen-Jie, Li Han, Tang Xin-Feng. Microstructures and thermoelectric properties of n-type melting spun(Bi0.85Sb0.15)2(Te1-xSex)3 compounds. Acta Physica Sinica, 2010, 59(12): 8927-8933. doi: 10.7498/aps.59.8927
    [16] Su Xian-Li, Tang Xin-Feng, Li Han. Effects of melt spinning process on microstructure and thermoelectric properties of n-type InSb compounds. Acta Physica Sinica, 2010, 59(4): 2860-2866. doi: 10.7498/aps.59.2860
    [17] Deng Shu-Kang, Tang Xin-Feng, Yang Pei-Zhi, Yan Yong-Gao. Structure and thermoelectric properties of p-type Ge-based Ba8Ga16CdxGe30-x type-Ⅰ clathrates doping by Cd. Acta Physica Sinica, 2009, 58(6): 4274-4280. doi: 10.7498/aps.58.4274
    [18] Cao Wei-Qiang, Deng Shu-Kang, Tang Xin-Feng, Li Peng. The effects of melt spinning process on microstructure and thermoelectric properties of Zn-doped type-I clathrates. Acta Physica Sinica, 2009, 58(1): 612-618. doi: 10.7498/aps.58.612
    [19] Su Xian-Li, Tang Xin-Feng, Li Han, Deng Shu-Kang. Structure and thermoelectric properties of n-type GaxCo4Sb12 skutterudite compounds. Acta Physica Sinica, 2008, 57(10): 6488-6493. doi: 10.7498/aps.57.6488
    [20] Liang Jun-Wu, Hu Hui-Fang, Wei Jian-Wei, Peng Ping. Effects of oxygen adsorption on the electronic structure and optical properties of single-wall carbon nanotubes. Acta Physica Sinica, 2005, 54(6): 2877-2882. doi: 10.7498/aps.54.2877
Metrics
  • Abstract views:  6273
  • PDF Downloads:  80
  • Cited By: 0
Publishing process
  • Received Date:  15 October 2018
  • Accepted Date:  04 February 2019
  • Available Online:  23 March 2019
  • Published Online:  05 April 2019

/

返回文章
返回