|
|
Temporal imaging based on first-order field correlation |
Zhang Rui-Xue, Li Hong-Guo, Li Zong-Guo |
School of Science, Tianjin University of Technology, Tianjin 300384, China |
|
|
Abstract Different from second-order temporal ghost imaging usually realized by means of second-order correlation measurement, in this paper, we investigate theoretically temporal imaging with temporally thermal light via first-order field correlation based on a Mach-Zehnder interferometer. The paraxial wave equation describing the diffraction of light and the differential equation characterizing the dispersion of light pulse are given. Based on the similarity between these equations, the duality between the paraxial diffraction of the light in the spatial domain and the dispersion of the temporal narrow-band pulse in the dispersive medium (i.e. the space-time duality) is obtained, and the impulse response functions in the time domain for several optical systems are also presented. Then in terms of the space-time duality, we design the scheme for temporal imaging via first-order thermal field correlation based on a Mach-Zehnder interferometer and obtain the intensity expression for first-order temporal imaging according to the temporal impulse response functions, and discuss the influences of the source pulse width and coherence time on the image visibility and resolution. The result shows that the temporal signal can be reconstructed through temporal first-order temporal imaging. Furthermore, when the source's coherence time is fixed, the image visibility decreases as the pulse width increases. However, the image resolution increases. When the source's pulse width is fixed, the image visibility increases as the coherence time increases. And yet the image resolution decreases. Specially, when the source's pulse width is 100 ps and the coherence time is 0.5 ps, the image quality (taking both the visibility and resolution into account) of a temporally rectangular object is satisfactory. In the simulation, the distance and width of the temporal rectangular object are 20 ps and 8 ps, respectively. It is shown that there is a dilemma between the visibility and resolution of first-order temporal imaging which is similar to the result of second-order ghost imaging. Our result discussed herein could be valuable in the reconstruction and detection of temporal signal via first-order temporal ghost imaging with temporally thermal light.
|
Received: 01 February 2019
|
PACS: |
42.30.-d
|
(Imaging and optical processing)
|
|
42.30.Kq
|
(Fourier optics)
|
|
42.50.Ar
|
(Photon statistics and coherence theory)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11604243) and the Natural Science Foundation of Tianjin, China (Grant No. 16JCQNJC01600). |
|
|
|
[1] |
Padgett M J, Boyd R W 2017 Phil. Trans. R. Soc. A 375 20160233
|
[2] |
Pittman T B, Shih Y H, Strekalov D V, Sergienko A V 1995 Phys. Rev. A 52 R3429
|
[3] |
Bennink R S, Bentley S J, Boyd R W 2002 Phys. Rev. Lett. 89 113601
|
[4] |
Gatti A, Brambilla E, Bache M, Lugiato L A 2004 Phys. Rev. A 70 013802
|
[5] |
Cheng J, Han S 2004 Phys. Rev. Lett. 92 093903
|
[6] |
Cao D Z, Xiong J, Wang K G 2005 Phys. Rev. A 71 013801
|
[7] |
Valencia A, Scarcelli G, D' Angelo M, Shih Y H 2005 Phys. Rev. Lett. 94 063601
|
[8] |
Ferri F, Magatti D, Gatti A, Bache M, Brambilla E, Lugiato L A 2005 Phys. Rev. Lett. 94 183602
|
[9] |
Cai Y, Zhu S Y 2005 Phys. Rev. E 71 056607
|
[10] |
Zhang D, Zhai Y H, Wu L A, Chen X H 2005 Opt. Lett. 30 2354
|
[11] |
Cai Y, Wang F 2007 Opt. Lett. 32 205
|
[12] |
Liu X F, Chen X H, Yao X R, Yu W K, Zhai G J, Wu L A 2014 Opt. Lett. 39 2314
|
[13] |
Sun B, Edgar M P, Bowman R, Vittert L E, Welsh S, Bowman A, Padgett M J 2013 Science 340 844
|
[14] |
Bromberg Y, Katz O, Silberberg Y 2009 Phys. Rev. A 79 053840
|
[15] |
Shapiro J H 2008 Phys. Rev. A 78 061802
|
[16] |
Zhao C Q, Gong W L, Chen M L, Li E R, Wang H, Xu W D, Han S S 2012 Appl. Phys. Lett. 101 141123
|
[17] |
Hong Y, Li E R, Gong W L, Han S S 2015 Opt. Express 23 14541
|
[18] |
Chen M, Li E, Gong W L, Bo Z, Xu X, Zhao C, Shen X, Xu W, Han S S 2013 Opt. Photonics J. 3 83
|
[19] |
Li S, Cropp F, Kabra K, Lane T J, Wetzstein G, Musumeci P, Ratner D 2018 Phys. Rev. Lett. 121 114801
|
[20] |
Cheng J 2009 Opt. Express 17 7916
|
[21] |
Cheng J, Lin J 2013 Phys. Rev. A 87 043810
|
[22] |
Cao D Z, Xiong J, Zhang S H, Lin L F, Gao L, Wang K G 2008 Appl. Phys. Lett. 92 201102
|
[23] |
Chan K W C, O' Sullivan M N, Boyd R W 2010 Opt. Express 18 5562
|
[24] |
Zhang D J, Li H G, Zhao Q L, Wang S, Wang H B, Xiong J, Wang K G 2015 Phys. Rev. A 92 013823
|
[25] |
Li H G, Zhang D J, Xu D J, Zhao Q L, Wang S, Wang H B, Xiong J, Wang K G 2015 Phys. Rev. A 92 043816
|
[26] |
Katz O, Bromberg Y, Silberberg Y 2009 Appl. Phys. Lett. 95 131110
|
[27] |
Zhong Y J, Liu J, Liang W Q, Zhao S M 2015 Acta Phys. Sin. 64 014202[仲亚军, 刘娇, 梁文强, 赵生妹 2015 物理学报 64 014202];
|
[28] |
Gao C, Wang X, Wang Z, Li Z, Du G, Chang F, Yao Z 2017 Phys. Rev. A 96 023838
|
[29] |
Cao D H, Li Q H, Zhuang X C, Ren H, Zhang S H, Song X B 2018 Chin. Phys. B 27 123401
|
[30] |
Yang H, Wu H, Wang H B, Cao D H, Zhang S H, Xiong J, Wang K 2018 Phys. Rev. A 98 053853
|
[31] |
Salem R, Foster M A, Gaeta A L 2013 Adv. Opt. Photonics 5 274
|
[32] |
Foster M A, Salem R, Geraghty D F, Turner-Foster A C, Lipson M, Gaeta A L 2008 Nature 456 81
|
[33] |
Schröder J, Wang F, Clarke A, Ryckeboer E, Pelusi M, Roelens M A, Eggleton B J 2010 Opt. Commun. 283 2611
|
[34] |
Fridman M, Farsi A, Okawachi Y, Gaeta A L 2012 Nature 481 62
|
[35] |
Ryczkowski P, Barbier M, Friberg A T, Dudley J M, Genty G 2016 Nat. Photonics 10 167
|
[36] |
Shirai T, Setälä T, Friberg A T 2010 J. Opt. Soc. Am. B 27 2549
|
[37] |
Setälä T, Shirai T, Friberg A T 2010 Phys. Rev. A 82 043813
|
[38] |
Chen Z, Li H, Li Y, Shi J, Zeng G 2013 Opt. Eng. 52 076103
|
[39] |
Gao L, Zhang S H, Xiong J, Gan S, Feng L J, Cao D Z, Wang K G 2009 Phys. Rev. A 80 021806
|
[40] |
Vabre L, Dubois A, Boccara A C 2002 Opt. Lett. 27 530
|
[41] |
Kolner B H 1994 IEEE J. Quant. Electron. 30 1951
|
[42] |
Cai Y, Zhu S 2004 Opt. Lett. 29 2716
|
[43] |
Qu L, Bai Y, Nan S, Shen Q, Li H, Fu X 2018 Opt. Laser Technol. 104 197
|
[1] |
Wei Wei, Zhang Zhi-Ming, Tang Li-Qin, Ding Lei, Fan Wan-De, Li Yi-Gang. Transmission characteristics of vortex beams in a sixfold photonic quasi-crystal fiber[J]. Acta Physica Sinica, 2019, 68(11):
.
doi:10.7498/aps.68.20190381. |
[2] |
Zhou Kang, Li Hua, Wan Wen-Jian, Li Zi-Ping, Cao Jun-Cheng. Group velocity dispersion analysis of terahertz quantum cascade laser frequency comb[J]. Acta Physica Sinica, 2019, 68(10):
.
doi:10.7498/aps.68.20190217. |
[3] |
Zhou Yang, Zhang Hong-Wei, Zhong Fei, Guo Shu-Xu. Iterative denoising of ghost imaging based on adaptive threshold method[J]. Acta Physica Sinica, 2018, 67(24):
.
doi:10.7498/aps.67.20181240. |
[4] |
Huang Pei, Fang Shao-Bo, Huang Hang-Dong, Hou Xun, Wei Zhi-Yi. Coherent synthesis of ultrashort pulses based on balanced optical cross-correlator[J]. Acta Physica Sinica, 2018, 67(24):
.
doi:10.7498/aps.67.20181851. |
|
|
|
|