Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Surface plasmaons enhanced light-matter interactions

Yu Hua-Kang Liu Bo-Dong Wu Wan-Ling Li Zhi-Yuan

Citation:

Surface plasmaons enhanced light-matter interactions

Yu Hua-Kang, Liu Bo-Dong, Wu Wan-Ling, Li Zhi-Yuan
PDF
HTML
Get Citation
  • Surface plasmon polaritons (SPPs) have been widely investigated in the past decades. Due to their unique feature of field localization, optical energy can be strongly confined in the subwavelength and even nanoscale space. This strong confinement gives rise to dramatically increased electromagnetic field strength, leading to greatly enhanced light-matter interactions. The properties of SPP are strongly dependent on material, morphology and structure. The wavelength of surface plasmon resonance can be readily manipulated over broadband optical spectra, covering ultraviolet, visible, near infrared to far infrared. In this review article, both working principle and applications of surface plasmon enhanced light-matter interactions, such as fluorescence, Raman scattering, nonlinear optics, heat effects, photoacoustic effects, photo-catalysis, and photovoltaic conversion, are comprehensively reviewed. Besides, the current problems and future research directions of surface plasmons are discussed. Our paper provides valuable reference for future high-performance plasmonic device and technology applications.
      Corresponding author: Li Zhi-Yuan, phzyli@scut.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2018YFA0306200), the National Natural Science Foundation of China (Grant Nos. 511434017, 11604230, 91850107), and the Innovative and Entrepreneurial Research Team Program of Guangdong Province, China (Grant No. 2016ZT06C594).
    [1]

    Link S, El-Sayed M A 2000 Int. Rev. Phys. Chem. 19 409Google Scholar

    [2]

    Tian Z Q, Ren B, Wu D Y 2002 J. Phys. Chem. B 106 9463

    [3]

    Atwater H A 2005 J. Appl. Phys. 98 011101Google Scholar

    [4]

    Willets K A, van Duyne R P 2007 Annu. Rev. Phys. Chem. 58 267Google Scholar

    [5]

    Jain P K, Huang X, El-Sayed I H, El-Sayed M A 2008 Acc. Chem. Res. 41 1578Google Scholar

    [6]

    Skrabalak S E, Chen J, Sun Y, Lu X, Au L, Cobley C M, Xia Y 2008 Acc. Chem. Res. 41 1587Google Scholar

    [7]

    Stiles P L, Dieringer J A, Shah N C, van Duyne R P 2008 Annu. Rev. Anal. Chem. 1 601Google Scholar

    [8]

    Xia Y, Xiong Y, Lim B, Skrabalak S E 2009 Angew. Chem. Int. Ed. 48 60Google Scholar

    [9]

    Li Z Y 2018 Adv. Opt. Mater. 6 1701097Google Scholar

    [10]

    Yu H K, Peng Y S, Yang Y, Li Z Y 2019 npj Comput. Mater 5 45Google Scholar

    [11]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824Google Scholar

    [12]

    West P R, Ishii S, Naik G V, Emani N K, Shalaev V M, Boltasseva A 2010 Laser Photonics Rev. 4 795Google Scholar

    [13]

    Li Y, Li Z, Chi C, Shan H, Zheng L, Fang Z 2017 Adv. Sci. 4 1600430Google Scholar

    [14]

    Wiley B J, Im S H, Li Z Y, McLellan J, Siekkinen A, Xia Y 2006 J. Phys. Chem. B 110 15666Google Scholar

    [15]

    Kneipp K, Wang Y, Kneipp H, Perelman L T, Itzkan I, Dasari R R, Feld M S 1997 Phys. Rev. Lett. 78 1667Google Scholar

    [16]

    Nie S 1997 Science 275 1102Google Scholar

    [17]

    Zhang J, Irannejad M, Cui B 2015 Plasmonics 10 831Google Scholar

    [18]

    Fang J, Du S, Lebedkin S, Li Z, Kruk R, Kappes M, Hahn H 2010 Nano Lett. 10 5006Google Scholar

    [19]

    Liu Z, Yang Z, Peng B, Cao C, Zhang C, You H, Xiong Q, Li Z, Fang J 2014 Adv. Mater. 26 2431Google Scholar

    [20]

    Li J F, Li C Y, Aroca R F 2017 Chem. Soc. Rev. 46 3962Google Scholar

    [21]

    Lu G, Zhang T, Li W, Hou L, Liu J, Gong Q 2011 J. Phys. Chem. C 115 15822Google Scholar

    [22]

    Anger P, Bharadwaj P, Novotny L 2006 Phys. Rev. Lett. 96 113002Google Scholar

    [23]

    Kühn S, Håkanson U, Rogobete L, Sandoghdar V 2006 Phys. Rev. Lett. 97 17402Google Scholar

    [24]

    Chou R Y, Lu G, Shen H, He Y, Cheng Y, Perriat P, Martini M, Tillement O, Gong Q 2014 J. Appl. Phys. 115 244310Google Scholar

    [25]

    Chen H, Ming T, Zhao L, Wang F, Sun L D, Wang J, Yan C H 2010 Nano Today 5 494Google Scholar

    [26]

    Chen Y, Munechika K, Ginger D S 2007 Nano Lett. 7 690Google Scholar

    [27]

    Wiley B J, Chen Y, Mclellan J M, Xiong Y, Li Z, Ginger D S, Xia Y 2007 Nano Lett. 7 1032Google Scholar

    [28]

    Liu S Y, Huang L, Li J F, Wang C, Li Q, Xu H X, Guo H L, Meng Z M, Shi Z, Li Z Y 2013 J. Phys. Chem. C 117 10636Google Scholar

    [29]

    Zhang H, Zhu J, Zhu Z, Jin Y, Li Q, Jin G 2013 Opt. Express 21 13492Google Scholar

    [30]

    Shen Y R 1984 The Principles of Nonlinear Optics (New Yeak: Wiley-Interscience) pp141−184

    [31]

    Boyd R W 2008 Nonlinear optics (Third Ed.) (Burlington: Academic Press) pp479−488

    [32]

    Moskovits M 1985 Rev. Mod. Phys. 57 783Google Scholar

    [33]

    Wang X, Huang S C, Huang T X, Su H S, Zhong J H, Zeng Z C, Li M H, Ren B 2017 Chem. Soc. Rev. 46 4020Google Scholar

    [34]

    Otto A, Mrozek I, Grabhorn H, Akemann W 1992 J. Phys. Condens. Matter 4 1143Google Scholar

    [35]

    Campion A, Kambhampati P 1998 Chem. Soc. Rev. 27 241Google Scholar

    [36]

    Pettinger B, Schambach P, Villagómez C J, Scott N 2012 Annu. Rev. Phys. Chem. 63 379Google Scholar

    [37]

    Schmid T, Opilik L, Blum C, Zenobi R 2013 Angew. Chem. Int. Ed. 52 5940Google Scholar

    [38]

    Zhang Z, Sheng S, Wang R, Sun M 2016 Anal. Chem. 88 9328Google Scholar

    [39]

    Zrimsek A B, Chiang N, Mattei M, Zaleski S, McAnally M O, Chapman C T, Henry A I, Schatz G C, van Duyne R P 2017 Chem. Rev. 117 7583Google Scholar

    [40]

    Shi X, Coca-López N, Janik J, Hartschuh A 2017 Chem. Rev. 117 4945Google Scholar

    [41]

    Verma P 2017 Chem. Rev. 117 6447Google Scholar

    [42]

    Richard-Lacroix M, Zhang Y, Dong Z, Deckert V 2017 Chem. Soc. Rev. 46 3922Google Scholar

    [43]

    Li Z Y, Xia Y 2010 Nano Lett. 10 243Google Scholar

    [44]

    Liu S Y, Li J, Zhou F, Gan L, Li Z Y 2011 Opt. Lett. 36 1296Google Scholar

    [45]

    Shan Y, Zheng Z, Liu J, Yang Y, Li Z, Huang Z, Jiang D 2017 npj Comput. Mater. 3 11Google Scholar

    [46]

    Zhang R, Zhang Y, Dong Z C, Jiang S, Zhang C, Chen L G, Zhang L, Liao Y, Aizpurua J, Luo Y, Yang J L, Hou J G 2013 Nature 498 82Google Scholar

    [47]

    Duan S, Tian G, Ji Y, Shao J, Dong Z, Luo Y 2015 J. Am. Chem. Soc. 137 9515Google Scholar

    [48]

    Zhang C, Chen B Q, Li Z Y 2015 J. Phys. Chem. C 119 11858

    [49]

    Zhang C, Chen B Q, Li Z Y 2016 Chin. Phys. B 25 95203Google Scholar

    [50]

    Chen B Q, Zhang C, Li J, Li Z Y, Xia Y 2016 Nanoscale 8 15730Google Scholar

    [51]

    Kauranen M, Zayats A V 2012 Nat. Photonics 6 737Google Scholar

    [52]

    Brown F, Parks R E, Sleeper A M 1965 Phys. Rev. Lett. 14 1029Google Scholar

    [53]

    Bloembergen N, Chang R K, Jha S S, Lee C H 1968 Phys. Rev. 174 813Google Scholar

    [54]

    Butet J, Brevet P F, Martin O J F 2015 ACS Nano 9 10545Google Scholar

    [55]

    Shen Y R 1999 Appl. Phys. B 68 295Google Scholar

    [56]

    Superfine R, Guyot-Sionnest P, Hunt J H, Kao C T, Shen Y R 1988 Surf. Sci. 200 L445Google Scholar

    [57]

    Baldelli S, Eppler A S, Anderson E, Shen Y R, Somorjai G A 2000 J. Chem. Phys. 113 5432Google Scholar

    [58]

    Liu W T, Shen Y R 2014 Proc. Natl. Acad. Sci. 111 1293Google Scholar

    [59]

    Bennink R S, Yoon Y K, Boyd R W, Sipe J E 1999 Opt. Lett. 24 1416Google Scholar

    [60]

    Zharov A A, Shadrivov I V, Kivshar Y S 2003 Phys. Rev. Lett. 91 37401Google Scholar

    [61]

    O’Brien S, McPeake D, Ramakrishna S, Pendry J 2004 Phys. Rev. B 69 241101Google Scholar

    [62]

    Klein M W, Enkrich C, Wegener M, Linden S 2006 Science 313 502Google Scholar

    [63]

    Kim E, Wang F, Wu W, Yu Z, Shen Y R 2008 Phys. Rev. B 78 113102Google Scholar

    [64]

    Minovich A E, Miroshnichenko A E, Bykov A Y, Murzina T V, Neshev D N, Kivshar Y S 2015 Laser Photonics Rev. 9 195Google Scholar

    [65]

    Li G, Zhang S, Zentgraf T 2017 Nat. Rev. Mater. 2 17010Google Scholar

    [66]

    Govorov A O, Richardson H H 2007 Nano Today 2 30

    [67]

    Baffou G, Quidant R 2013 Laser Photonics Rev. 7 171Google Scholar

    [68]

    Brongersma M L, Halas N J, Nordlander P 2015 Nat. Nanotechnol. 10 25Google Scholar

    [69]

    Link S, Burda C, Mohamed M B, Nikoobakht B, El-Sayed M A 1999 J. Phys. Chem. A 103 1165Google Scholar

    [70]

    Link S, Burda C, Nikoobakht B, El-Sayed M A 2000 J. Phys. Chem. B 104 6152

    [71]

    Richardson H H, Thomas A C, Carlson M T, Kordesch M E, Govorov A O 2007 J. Electron. Mater. 36 1587Google Scholar

    [72]

    Wang J, Chen Y, Chen X, Hao J, Yan M, Qiu M 2011 Opt. Express 19 14726Google Scholar

    [73]

    Chen X, Chen Y, Yan M, Qiu M 2012 ACS Nano 6 2550Google Scholar

    [74]

    González-Rubio G, González-Izquierdo J, Bañares L, Tardajos G, Rivera A, Altantzis T, Bals S, Peña-Rodríguez O, Guerrero-Martínez A, Liz-Marzán L M 2015 Nano Lett. 15 8282Google Scholar

    [75]

    González-Rubio G, Díaz-Núñez P, Rivera A, Prada A, Tardajos G, González-Izquierdo J, Bañares L, Llombart P, Macdowell L G, Alcolea Palafox M, Liz-Marzán L M, Peña-Rodríguez O, Guerrero-Martínez A 2017 Science 358 640Google Scholar

    [76]

    Boyer D, Tamarat P, Maali A, Lounis B, Orrit M 2002 Science 297 1160Google Scholar

    [77]

    Zharov V P, Lapotko D O 2005 IEEE J. Sel. Top. Quantum Electron. 11 733Google Scholar

    [78]

    Hu M, Chen J, Li Z Y, Au L, Hartland G V, Li X, Marquez M, Xia Y 2006 Chem. Soc. Rev. 35 1084Google Scholar

    [79]

    Volkov A N, Sevilla C 2007 Appl. Surf. Sci. 253 6394Google Scholar

    [80]

    Doane T L, Burda C 2012 Chem. Soc. Rev. 41 2885Google Scholar

    [81]

    Kim C, Favazza C, Wang L V 2010 Chem. Rev. 110 2756Google Scholar

    [82]

    Hirsch L R, Stafford R J, Bankson J A, Sershen S R, Rivera B, Price R E, Hazle J D, Halas N J, West J L 2003 Proc. Natl. Acad. Sci. 100 13549Google Scholar

    [83]

    Huang X, El-Sayed I H, Qian W, El-Sayed M A 2006 J. Am. Chem. Soc. 128 2115Google Scholar

    [84]

    Pissuwan D, Valenzuela S M, Cortie M B 2006 Trends Biotechnol. 24 62Google Scholar

    [85]

    Chen J, Wang D, Xi J, Au L, Siekkinen A, Warsen A, Li Z Y, Zhang H, Xia Y, Li X 2007 Nano Lett. 7 1318Google Scholar

    [86]

    Gobin A M, Lee M H, Halas N J, James W D, Drezek R A, West J L 2007 Nano Lett. 7 1929Google Scholar

    [87]

    Au L, Zheng D, Zhou F, Li Z Y, Li X, Xia Y 2008 ACS Nano 2 1645Google Scholar

    [88]

    Wang Y, Black K C L, Luehmann H, Li W, Zhang Y, Cai X, Wan D, Liu S Y, Li M, Kim P, Li Z Y, Wang L V, Liu Y, Xia Y 2013 ACS Nano 7 2068Google Scholar

    [89]

    Sershen S R, Westcott S L, Halas N J, West J L 2000 J. Biomed. Mater. Res. 51 293Google Scholar

    [90]

    Skirtach A G, Dejugnat C, Braun D, Susha A S, Rogach A L, Parak W J, Möhwald H, Sukhorukov G B 2005 Nano Lett. 5 1371Google Scholar

    [91]

    Zharov V P, Mercer K E, Galitovskaya E N, Smeltzer M S 2006 Biophys. J. 90 619Google Scholar

    [92]

    Liu G L, Kim J, Lu Y, Lee L P 2005 Nat. Mater. 5 27

    [93]

    Boyd D A, Adleman J R, Goodwin D G, Psaltis D 2008 Anal. Chem. 80 2452Google Scholar

    [94]

    Neumann O, Feronti C, Neumann A D, Dong A, Schell K, Lu B, Kim E, Quinn M, Thompson S, Grady N, Nordlander P, Oden M, Halas N J 2013 Proc. Natl. Acad. Sci. 110 11677Google Scholar

    [95]

    Baffou G, Quidant R, Girard C 2009 Appl. Phys. Lett. 94 153109Google Scholar

    [96]

    Chen H, Shao L, Li Q, Wang J 2013 Chem. Soc. Rev. 42 2679Google Scholar

    [97]

    Selmke M, Braun M, Cichos F 2012 ACS Nano 6 2741Google Scholar

    [98]

    Berciaud S, Cognet L, Blab A G, Lounis B 2005 Phys. Rev. Lett. 93 257402

    [99]

    Cognet L, Tardin C, Boyer D, Choquet D, Tamarat P, Lounis B 2003 Proc. Natl. Acad. Sci. 100 11350Google Scholar

    [100]

    Litzinger D C, Buiting A M J, van Rooijen N, Huang L 1994 Biochim. Biophys. Acta, Biomembr. 1190 99Google Scholar

    [101]

    Jain P K, El-Sayed I H, El-Sayed M A 2007 Nano Today 2 18

    [102]

    Copland J A, Eghtedari M, Popov V L, Kotov N, Mamedova N, Motamedi M, Oraevsky A A 2004 Mol. Imag. Biol. 6 341Google Scholar

    [103]

    Chen Y S, Frey W, Kim S, Kruizinga P, Homan K, Emelianov S 2011 Nano Lett. 11 348Google Scholar

    [104]

    Yang X, Skrabalak S E, Li Z Y, Xia Y N, Wang L V 2007 Nano Lett. 7 3798Google Scholar

    [105]

    Tian C, Qian W, Shao X, Xie Z, Cheng X, Liu S, Cheng Q, Liu B, Wang X 2016 Adv. Sci. 3 1600237Google Scholar

    [106]

    Porosoff M D, Yan B, Chen J G 2016 Energy Environ. Sci. 9 62Google Scholar

    [107]

    Zhou N, López-Puente V, Wang Q, Polavarapu L, Pastoriza-Santos I, Xu Q H 2015 RSC Adv. 5 29076Google Scholar

    [108]

    Lee J, Mubeen S, Ji X, Stucky G D, Moskovits M 2012 Nano Lett. 12 5014Google Scholar

    [109]

    Zhou X, Liu G, Yu J, Fan W 2012 J. Mater. Chem. 22 21337Google Scholar

    [110]

    Hogan N J, Urban A S, Ayala-Orozco C, Pimpinelli A, Nordlander P, Halas N J 2014 Nano Lett. 14 4640Google Scholar

    [111]

    Mukherjee S, Libisch F, Large N, Neumann O, Brown L V, Cheng J, Lassiter J B, Carter E A, Nordlander P, Halas N J 2013 Nano Lett. 13 240Google Scholar

    [112]

    Mukherjee S, Zhou L, Goodman A M, Large N, Ayala-Orozco C, Zhang Y, Nordlander P, Halas N J 2014 J. Am. Chem. Soc. 136 64Google Scholar

    [113]

    Hou C, Zhao G, Ji Y, Niu Z, Wang D, Li Y 2014 Nano Res. 7 1364Google Scholar

    [114]

    Chambers M B, Wang X, Elgrishi N, Hendon C H, Walsh A, Bonnefoy J, Canivet J, Quadrelli E A, Farrusseng D, Mellot-Draznieks C, Fontecave M 2015 ChemSusChem 8 603Google Scholar

    [115]

    Xie S, Liu X Y, Xia Y 2015 Nano Res. 8 82Google Scholar

    [116]

    Zhang X, Li X, Reish M E, Zhang D, Su N Q, Gutiérrez Y, Moreno F, Yang W, Everitt H O, Liu J 2018 Nano Lett. 18 1714Google Scholar

    [117]

    Zhang Y, He S, Guo W, Hu Y, Huang J, Mulcahy J R, Wei W D 2018 Chem. Rev. 118 2927Google Scholar

    [118]

    Turner J A 1999 Science 285 687Google Scholar

    [119]

    Catchpole K R, Polman A 2008 Opt. Express 16 21793Google Scholar

    [120]

    Smith J G, Faucheaux J A, Jain P K 2015 Nano Today 10 67Google Scholar

    [121]

    Gangadharan D T, Xu Z, Liu Y, Izquierdo R, Ma D 2016 Nanophotonics 6 153Google Scholar

    [122]

    Lim E L, Yap C C, Mat Teridi M A, Teh C H, Mohd Yusoff A R bin, Hj Jumali M H 2016 Org. Electron. 36 12Google Scholar

    [123]

    Rho W Y, Song D H, Yang H Y, Kim H S, Son B S, Suh J S, Jun B H 2018 J. Solid State Chem. 258 271Google Scholar

    [124]

    Bai Y, Zhang H, Wang J, Chen N, Yao J, Huang T, Zhang X, Yin Z, Fu Z 2011 Chin. Opt. Lett. 9 32901Google Scholar

  • 图 1  LSPP和PSPP的物理性质 (a) 在入射光的电场作用下金属纳米颗粒表面等离激元振荡示意图, 显示了自由电子气团在外界光场的电场作用下产生相对于核心的位移, 激发了LSPP; (b) 电场作用下金属-电介质界面表面等离子体振荡示意图, 显示了PSPP被外界光场所激发, 在金属和电介质内部电场均可以被局域亚波长尺度内; (c) 金纳米棒的吸收光谱, 显示出存在着横向共振(短波)和径向共振(长波)两个LSPP共振峰; (d) 金属-电介质界面PSPP的色散关系(实线), 同时显示真空中光色散关系(虚线)

    Figure 1.  Basic physical properties of LSPP and PSPP: (a) Oscillation of free electrons in metal nanoparticle with respect to the particle center when driven by the electric field of incident light, indicating ignition of surface plasmon resonance and excitation of LSPP; (b) surface charge (minus electrons and positive ions) oscillation with respect to each other at the metal-dielectric interface when driven by the electric field of TM-polarized incident light, indicating the excitation of PSPP and the subwavelength localization of electric field around the interface; (c) absorption spectrum of gold nanorod, indicating the existence of short-wavelength transverse LSPP and long- wavelength longitudinal LSPP mode simultaneously in this nanoparticle system; (d) the dispersion curve for a PSPP mode at the metal-dielectric interface (solid curve) together with the dispersion of light in vacuum (dashed curve).

    图 2  银纳米颗粒在紫外波段的消光光谱(黑线)、吸收光谱(红线)和散射光谱(蓝线) (a) 球体; (b) 立方体; (c) 四面体; (d) 正八面体; (e) 空心球体(壳厚度为10 nm); (f) 薄球壳(壳厚度为5 nm)[14]

    Figure 2.  Calculated UV−vis extinction (black), absorption (red), and scattering (blue) spectra of silver nanostructures: (a) Anisotropic sphere; (b) anisotropic cubes; (c) tetrahedra; (d) octahedra; (e) hollow sphere (with 10 nm shell); (f) thinner shell walls (with 5 nm shell) (Fig. 2 adapted from Ref. [14] with permission)

    图 3  (a) 在Si3N4薄膜上, 呈蝴蝶结型的纳米颗粒结构的扫描电子显微镜(SEM)照片, 几个蝴蝶结的间隙大小不一样; 用时域有限差分方法计算得到的(b) 785 nm和(c) 632.8 nm两种激光照射时, 间隙为6 nm的蝴蝶结型金纳米结构上的电场强度(${\left| E \right|^2}$)分布; (d) 海胆型纳米颗粒的SEM照片; (e) 633 nm激光照射时, 海胆型纳米颗粒在轴面上的电场强度(${\left| E \right|^2}$)分布. 图(a)−(c)来源于文献[17]; 图(d)−(e)来源于文献[18]

    Figure 3.  (a) The SEM image of bowtie nanoantenna exposed on the Si3N4 membrane with varied gap sizes in the range of 3 to 24 nm; the FDTD calculated electric field intensity, ${\left| E \right|^2}$, of the gold bowtie nanoantenna with 6 nm gap at an excitation wavelength of (b) 785 nm and (c) 632.8 nm; (d) the SEM image of a sea urchin-like nanoparticle with an external diameter of 400 nm; (e) the typical distributions of the electric field strength (${\left| E \right|^2}$) calculated in a plane across a vertical axis of particles irradiated at 633 nm(Fig. 3(a)-(c) adapted from Ref. [17] and (d)−(e) adapted from Ref. [18] with permission).

    图 4  (a) 银纳米棒的SEM照片; (b) 纳米棒在可见光-近红外波段的消光光谱[27]

    Figure 4.  (a) The SEM image of silver nanobars; (b) the Vis-NIR extinction spectrum of nanobars (Fig. 4 adapted from Ref. [27] with permission).

    图 5  (a) 不同长径比的纳米棒的SEM照片, 及其相应的归一化散射光谱; (b) 宽度、高度均保持50 nm不变, 长度分别为100, 150和200 nm的纳米棒, 用DDA方法计算得的散射光谱[27]

    Figure 5.  (a) The SEM images of individual nanobars and the corresponding normalized scattering spectra; (b) DDA calculated scattering spectra of nanobars with varied lengths in 100, 150, and 200 nm, keeping width in 55 nm and height in 50 nm (Fig. 5 adapted from Ref. [27] with permission).

    图 6  用经典理论分析拉曼散射的(a) 激发过程和(b) 辐射过程; 用多重瑞利散射效应分析拉曼散射的(c) 激发过程和(d) 辐射过程[48]

    Figure 6.  (a) The excitation process and (b) the radiation process of normal spontaneous Raman enhancement; (d) the excitation process and (d) the radiation process of spontaneous Raman enhancement (Fig. 6 adapted from Ref. [48] with permission).

    图 7  活癌细胞成像的(a) 亮视场、(b) 荧光显微成像图; (c) 无金纳米颗粒的成像对比图; (d)−(f) 基于特殊金纳米颗粒的癌细胞成像及相应的放大图像, 可以看出光声信号对比度很高, 足以识别出单个癌细胞, 如虚线圆圈所示[105]

    Figure 7.  (a) Bright-field and (b) fluorescence microscopic imaging of single live cancer cells; (c) control image shows no obvious photoacoustic signals for cancer cell not treated with gold nanoparticles; (d)−(f) typical images and corresponding enlarged images for cells treated with gold nanoparticles, showing photoacoustic signals strong enough to identify single cancer cells in dashed circles (Fig. 7 adapted from Ref. [105] with permission).

    图 8  表面等离激元光学的研究现状和进一步发展的展望分析路线图

    Figure 8.  Analysis and roadmap for the current state and future development perspective of plasmonics.

  • [1]

    Link S, El-Sayed M A 2000 Int. Rev. Phys. Chem. 19 409Google Scholar

    [2]

    Tian Z Q, Ren B, Wu D Y 2002 J. Phys. Chem. B 106 9463

    [3]

    Atwater H A 2005 J. Appl. Phys. 98 011101Google Scholar

    [4]

    Willets K A, van Duyne R P 2007 Annu. Rev. Phys. Chem. 58 267Google Scholar

    [5]

    Jain P K, Huang X, El-Sayed I H, El-Sayed M A 2008 Acc. Chem. Res. 41 1578Google Scholar

    [6]

    Skrabalak S E, Chen J, Sun Y, Lu X, Au L, Cobley C M, Xia Y 2008 Acc. Chem. Res. 41 1587Google Scholar

    [7]

    Stiles P L, Dieringer J A, Shah N C, van Duyne R P 2008 Annu. Rev. Anal. Chem. 1 601Google Scholar

    [8]

    Xia Y, Xiong Y, Lim B, Skrabalak S E 2009 Angew. Chem. Int. Ed. 48 60Google Scholar

    [9]

    Li Z Y 2018 Adv. Opt. Mater. 6 1701097Google Scholar

    [10]

    Yu H K, Peng Y S, Yang Y, Li Z Y 2019 npj Comput. Mater 5 45Google Scholar

    [11]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824Google Scholar

    [12]

    West P R, Ishii S, Naik G V, Emani N K, Shalaev V M, Boltasseva A 2010 Laser Photonics Rev. 4 795Google Scholar

    [13]

    Li Y, Li Z, Chi C, Shan H, Zheng L, Fang Z 2017 Adv. Sci. 4 1600430Google Scholar

    [14]

    Wiley B J, Im S H, Li Z Y, McLellan J, Siekkinen A, Xia Y 2006 J. Phys. Chem. B 110 15666Google Scholar

    [15]

    Kneipp K, Wang Y, Kneipp H, Perelman L T, Itzkan I, Dasari R R, Feld M S 1997 Phys. Rev. Lett. 78 1667Google Scholar

    [16]

    Nie S 1997 Science 275 1102Google Scholar

    [17]

    Zhang J, Irannejad M, Cui B 2015 Plasmonics 10 831Google Scholar

    [18]

    Fang J, Du S, Lebedkin S, Li Z, Kruk R, Kappes M, Hahn H 2010 Nano Lett. 10 5006Google Scholar

    [19]

    Liu Z, Yang Z, Peng B, Cao C, Zhang C, You H, Xiong Q, Li Z, Fang J 2014 Adv. Mater. 26 2431Google Scholar

    [20]

    Li J F, Li C Y, Aroca R F 2017 Chem. Soc. Rev. 46 3962Google Scholar

    [21]

    Lu G, Zhang T, Li W, Hou L, Liu J, Gong Q 2011 J. Phys. Chem. C 115 15822Google Scholar

    [22]

    Anger P, Bharadwaj P, Novotny L 2006 Phys. Rev. Lett. 96 113002Google Scholar

    [23]

    Kühn S, Håkanson U, Rogobete L, Sandoghdar V 2006 Phys. Rev. Lett. 97 17402Google Scholar

    [24]

    Chou R Y, Lu G, Shen H, He Y, Cheng Y, Perriat P, Martini M, Tillement O, Gong Q 2014 J. Appl. Phys. 115 244310Google Scholar

    [25]

    Chen H, Ming T, Zhao L, Wang F, Sun L D, Wang J, Yan C H 2010 Nano Today 5 494Google Scholar

    [26]

    Chen Y, Munechika K, Ginger D S 2007 Nano Lett. 7 690Google Scholar

    [27]

    Wiley B J, Chen Y, Mclellan J M, Xiong Y, Li Z, Ginger D S, Xia Y 2007 Nano Lett. 7 1032Google Scholar

    [28]

    Liu S Y, Huang L, Li J F, Wang C, Li Q, Xu H X, Guo H L, Meng Z M, Shi Z, Li Z Y 2013 J. Phys. Chem. C 117 10636Google Scholar

    [29]

    Zhang H, Zhu J, Zhu Z, Jin Y, Li Q, Jin G 2013 Opt. Express 21 13492Google Scholar

    [30]

    Shen Y R 1984 The Principles of Nonlinear Optics (New Yeak: Wiley-Interscience) pp141−184

    [31]

    Boyd R W 2008 Nonlinear optics (Third Ed.) (Burlington: Academic Press) pp479−488

    [32]

    Moskovits M 1985 Rev. Mod. Phys. 57 783Google Scholar

    [33]

    Wang X, Huang S C, Huang T X, Su H S, Zhong J H, Zeng Z C, Li M H, Ren B 2017 Chem. Soc. Rev. 46 4020Google Scholar

    [34]

    Otto A, Mrozek I, Grabhorn H, Akemann W 1992 J. Phys. Condens. Matter 4 1143Google Scholar

    [35]

    Campion A, Kambhampati P 1998 Chem. Soc. Rev. 27 241Google Scholar

    [36]

    Pettinger B, Schambach P, Villagómez C J, Scott N 2012 Annu. Rev. Phys. Chem. 63 379Google Scholar

    [37]

    Schmid T, Opilik L, Blum C, Zenobi R 2013 Angew. Chem. Int. Ed. 52 5940Google Scholar

    [38]

    Zhang Z, Sheng S, Wang R, Sun M 2016 Anal. Chem. 88 9328Google Scholar

    [39]

    Zrimsek A B, Chiang N, Mattei M, Zaleski S, McAnally M O, Chapman C T, Henry A I, Schatz G C, van Duyne R P 2017 Chem. Rev. 117 7583Google Scholar

    [40]

    Shi X, Coca-López N, Janik J, Hartschuh A 2017 Chem. Rev. 117 4945Google Scholar

    [41]

    Verma P 2017 Chem. Rev. 117 6447Google Scholar

    [42]

    Richard-Lacroix M, Zhang Y, Dong Z, Deckert V 2017 Chem. Soc. Rev. 46 3922Google Scholar

    [43]

    Li Z Y, Xia Y 2010 Nano Lett. 10 243Google Scholar

    [44]

    Liu S Y, Li J, Zhou F, Gan L, Li Z Y 2011 Opt. Lett. 36 1296Google Scholar

    [45]

    Shan Y, Zheng Z, Liu J, Yang Y, Li Z, Huang Z, Jiang D 2017 npj Comput. Mater. 3 11Google Scholar

    [46]

    Zhang R, Zhang Y, Dong Z C, Jiang S, Zhang C, Chen L G, Zhang L, Liao Y, Aizpurua J, Luo Y, Yang J L, Hou J G 2013 Nature 498 82Google Scholar

    [47]

    Duan S, Tian G, Ji Y, Shao J, Dong Z, Luo Y 2015 J. Am. Chem. Soc. 137 9515Google Scholar

    [48]

    Zhang C, Chen B Q, Li Z Y 2015 J. Phys. Chem. C 119 11858

    [49]

    Zhang C, Chen B Q, Li Z Y 2016 Chin. Phys. B 25 95203Google Scholar

    [50]

    Chen B Q, Zhang C, Li J, Li Z Y, Xia Y 2016 Nanoscale 8 15730Google Scholar

    [51]

    Kauranen M, Zayats A V 2012 Nat. Photonics 6 737Google Scholar

    [52]

    Brown F, Parks R E, Sleeper A M 1965 Phys. Rev. Lett. 14 1029Google Scholar

    [53]

    Bloembergen N, Chang R K, Jha S S, Lee C H 1968 Phys. Rev. 174 813Google Scholar

    [54]

    Butet J, Brevet P F, Martin O J F 2015 ACS Nano 9 10545Google Scholar

    [55]

    Shen Y R 1999 Appl. Phys. B 68 295Google Scholar

    [56]

    Superfine R, Guyot-Sionnest P, Hunt J H, Kao C T, Shen Y R 1988 Surf. Sci. 200 L445Google Scholar

    [57]

    Baldelli S, Eppler A S, Anderson E, Shen Y R, Somorjai G A 2000 J. Chem. Phys. 113 5432Google Scholar

    [58]

    Liu W T, Shen Y R 2014 Proc. Natl. Acad. Sci. 111 1293Google Scholar

    [59]

    Bennink R S, Yoon Y K, Boyd R W, Sipe J E 1999 Opt. Lett. 24 1416Google Scholar

    [60]

    Zharov A A, Shadrivov I V, Kivshar Y S 2003 Phys. Rev. Lett. 91 37401Google Scholar

    [61]

    O’Brien S, McPeake D, Ramakrishna S, Pendry J 2004 Phys. Rev. B 69 241101Google Scholar

    [62]

    Klein M W, Enkrich C, Wegener M, Linden S 2006 Science 313 502Google Scholar

    [63]

    Kim E, Wang F, Wu W, Yu Z, Shen Y R 2008 Phys. Rev. B 78 113102Google Scholar

    [64]

    Minovich A E, Miroshnichenko A E, Bykov A Y, Murzina T V, Neshev D N, Kivshar Y S 2015 Laser Photonics Rev. 9 195Google Scholar

    [65]

    Li G, Zhang S, Zentgraf T 2017 Nat. Rev. Mater. 2 17010Google Scholar

    [66]

    Govorov A O, Richardson H H 2007 Nano Today 2 30

    [67]

    Baffou G, Quidant R 2013 Laser Photonics Rev. 7 171Google Scholar

    [68]

    Brongersma M L, Halas N J, Nordlander P 2015 Nat. Nanotechnol. 10 25Google Scholar

    [69]

    Link S, Burda C, Mohamed M B, Nikoobakht B, El-Sayed M A 1999 J. Phys. Chem. A 103 1165Google Scholar

    [70]

    Link S, Burda C, Nikoobakht B, El-Sayed M A 2000 J. Phys. Chem. B 104 6152

    [71]

    Richardson H H, Thomas A C, Carlson M T, Kordesch M E, Govorov A O 2007 J. Electron. Mater. 36 1587Google Scholar

    [72]

    Wang J, Chen Y, Chen X, Hao J, Yan M, Qiu M 2011 Opt. Express 19 14726Google Scholar

    [73]

    Chen X, Chen Y, Yan M, Qiu M 2012 ACS Nano 6 2550Google Scholar

    [74]

    González-Rubio G, González-Izquierdo J, Bañares L, Tardajos G, Rivera A, Altantzis T, Bals S, Peña-Rodríguez O, Guerrero-Martínez A, Liz-Marzán L M 2015 Nano Lett. 15 8282Google Scholar

    [75]

    González-Rubio G, Díaz-Núñez P, Rivera A, Prada A, Tardajos G, González-Izquierdo J, Bañares L, Llombart P, Macdowell L G, Alcolea Palafox M, Liz-Marzán L M, Peña-Rodríguez O, Guerrero-Martínez A 2017 Science 358 640Google Scholar

    [76]

    Boyer D, Tamarat P, Maali A, Lounis B, Orrit M 2002 Science 297 1160Google Scholar

    [77]

    Zharov V P, Lapotko D O 2005 IEEE J. Sel. Top. Quantum Electron. 11 733Google Scholar

    [78]

    Hu M, Chen J, Li Z Y, Au L, Hartland G V, Li X, Marquez M, Xia Y 2006 Chem. Soc. Rev. 35 1084Google Scholar

    [79]

    Volkov A N, Sevilla C 2007 Appl. Surf. Sci. 253 6394Google Scholar

    [80]

    Doane T L, Burda C 2012 Chem. Soc. Rev. 41 2885Google Scholar

    [81]

    Kim C, Favazza C, Wang L V 2010 Chem. Rev. 110 2756Google Scholar

    [82]

    Hirsch L R, Stafford R J, Bankson J A, Sershen S R, Rivera B, Price R E, Hazle J D, Halas N J, West J L 2003 Proc. Natl. Acad. Sci. 100 13549Google Scholar

    [83]

    Huang X, El-Sayed I H, Qian W, El-Sayed M A 2006 J. Am. Chem. Soc. 128 2115Google Scholar

    [84]

    Pissuwan D, Valenzuela S M, Cortie M B 2006 Trends Biotechnol. 24 62Google Scholar

    [85]

    Chen J, Wang D, Xi J, Au L, Siekkinen A, Warsen A, Li Z Y, Zhang H, Xia Y, Li X 2007 Nano Lett. 7 1318Google Scholar

    [86]

    Gobin A M, Lee M H, Halas N J, James W D, Drezek R A, West J L 2007 Nano Lett. 7 1929Google Scholar

    [87]

    Au L, Zheng D, Zhou F, Li Z Y, Li X, Xia Y 2008 ACS Nano 2 1645Google Scholar

    [88]

    Wang Y, Black K C L, Luehmann H, Li W, Zhang Y, Cai X, Wan D, Liu S Y, Li M, Kim P, Li Z Y, Wang L V, Liu Y, Xia Y 2013 ACS Nano 7 2068Google Scholar

    [89]

    Sershen S R, Westcott S L, Halas N J, West J L 2000 J. Biomed. Mater. Res. 51 293Google Scholar

    [90]

    Skirtach A G, Dejugnat C, Braun D, Susha A S, Rogach A L, Parak W J, Möhwald H, Sukhorukov G B 2005 Nano Lett. 5 1371Google Scholar

    [91]

    Zharov V P, Mercer K E, Galitovskaya E N, Smeltzer M S 2006 Biophys. J. 90 619Google Scholar

    [92]

    Liu G L, Kim J, Lu Y, Lee L P 2005 Nat. Mater. 5 27

    [93]

    Boyd D A, Adleman J R, Goodwin D G, Psaltis D 2008 Anal. Chem. 80 2452Google Scholar

    [94]

    Neumann O, Feronti C, Neumann A D, Dong A, Schell K, Lu B, Kim E, Quinn M, Thompson S, Grady N, Nordlander P, Oden M, Halas N J 2013 Proc. Natl. Acad. Sci. 110 11677Google Scholar

    [95]

    Baffou G, Quidant R, Girard C 2009 Appl. Phys. Lett. 94 153109Google Scholar

    [96]

    Chen H, Shao L, Li Q, Wang J 2013 Chem. Soc. Rev. 42 2679Google Scholar

    [97]

    Selmke M, Braun M, Cichos F 2012 ACS Nano 6 2741Google Scholar

    [98]

    Berciaud S, Cognet L, Blab A G, Lounis B 2005 Phys. Rev. Lett. 93 257402

    [99]

    Cognet L, Tardin C, Boyer D, Choquet D, Tamarat P, Lounis B 2003 Proc. Natl. Acad. Sci. 100 11350Google Scholar

    [100]

    Litzinger D C, Buiting A M J, van Rooijen N, Huang L 1994 Biochim. Biophys. Acta, Biomembr. 1190 99Google Scholar

    [101]

    Jain P K, El-Sayed I H, El-Sayed M A 2007 Nano Today 2 18

    [102]

    Copland J A, Eghtedari M, Popov V L, Kotov N, Mamedova N, Motamedi M, Oraevsky A A 2004 Mol. Imag. Biol. 6 341Google Scholar

    [103]

    Chen Y S, Frey W, Kim S, Kruizinga P, Homan K, Emelianov S 2011 Nano Lett. 11 348Google Scholar

    [104]

    Yang X, Skrabalak S E, Li Z Y, Xia Y N, Wang L V 2007 Nano Lett. 7 3798Google Scholar

    [105]

    Tian C, Qian W, Shao X, Xie Z, Cheng X, Liu S, Cheng Q, Liu B, Wang X 2016 Adv. Sci. 3 1600237Google Scholar

    [106]

    Porosoff M D, Yan B, Chen J G 2016 Energy Environ. Sci. 9 62Google Scholar

    [107]

    Zhou N, López-Puente V, Wang Q, Polavarapu L, Pastoriza-Santos I, Xu Q H 2015 RSC Adv. 5 29076Google Scholar

    [108]

    Lee J, Mubeen S, Ji X, Stucky G D, Moskovits M 2012 Nano Lett. 12 5014Google Scholar

    [109]

    Zhou X, Liu G, Yu J, Fan W 2012 J. Mater. Chem. 22 21337Google Scholar

    [110]

    Hogan N J, Urban A S, Ayala-Orozco C, Pimpinelli A, Nordlander P, Halas N J 2014 Nano Lett. 14 4640Google Scholar

    [111]

    Mukherjee S, Libisch F, Large N, Neumann O, Brown L V, Cheng J, Lassiter J B, Carter E A, Nordlander P, Halas N J 2013 Nano Lett. 13 240Google Scholar

    [112]

    Mukherjee S, Zhou L, Goodman A M, Large N, Ayala-Orozco C, Zhang Y, Nordlander P, Halas N J 2014 J. Am. Chem. Soc. 136 64Google Scholar

    [113]

    Hou C, Zhao G, Ji Y, Niu Z, Wang D, Li Y 2014 Nano Res. 7 1364Google Scholar

    [114]

    Chambers M B, Wang X, Elgrishi N, Hendon C H, Walsh A, Bonnefoy J, Canivet J, Quadrelli E A, Farrusseng D, Mellot-Draznieks C, Fontecave M 2015 ChemSusChem 8 603Google Scholar

    [115]

    Xie S, Liu X Y, Xia Y 2015 Nano Res. 8 82Google Scholar

    [116]

    Zhang X, Li X, Reish M E, Zhang D, Su N Q, Gutiérrez Y, Moreno F, Yang W, Everitt H O, Liu J 2018 Nano Lett. 18 1714Google Scholar

    [117]

    Zhang Y, He S, Guo W, Hu Y, Huang J, Mulcahy J R, Wei W D 2018 Chem. Rev. 118 2927Google Scholar

    [118]

    Turner J A 1999 Science 285 687Google Scholar

    [119]

    Catchpole K R, Polman A 2008 Opt. Express 16 21793Google Scholar

    [120]

    Smith J G, Faucheaux J A, Jain P K 2015 Nano Today 10 67Google Scholar

    [121]

    Gangadharan D T, Xu Z, Liu Y, Izquierdo R, Ma D 2016 Nanophotonics 6 153Google Scholar

    [122]

    Lim E L, Yap C C, Mat Teridi M A, Teh C H, Mohd Yusoff A R bin, Hj Jumali M H 2016 Org. Electron. 36 12Google Scholar

    [123]

    Rho W Y, Song D H, Yang H Y, Kim H S, Son B S, Suh J S, Jun B H 2018 J. Solid State Chem. 258 271Google Scholar

    [124]

    Bai Y, Zhang H, Wang J, Chen N, Yao J, Huang T, Zhang X, Yin Z, Fu Z 2011 Chin. Opt. Lett. 9 32901Google Scholar

  • [1] Yan Xiao-Hong, Niu Yi-Jie, Xu Hong-Xing, Wei Hong. Strong coupling of single plasmonic nanoparticles and nanogaps with quantum emitters. Acta Physica Sinica, 2022, 71(6): 067301. doi: 10.7498/aps.71.20211900
    [2] Zhang Lian, Wang Hua-Yu, Wang Ning, Tao Can, Zhai Xue-Lin, Ma Ping-Zhun, Zhong Ying, Liu Hai-Tao. Broadband enhancement of spontaneous emission by optical dipole nanoantenna on metallic substrate: An intuitive model of surface plasmon polariton. Acta Physica Sinica, 2022, 71(11): 118101. doi: 10.7498/aps.70.20212290
    [3] Zhang Lian,  Wang Hua-Yu,  Wang Ning,  Tao Can,  Zhai Xue-Lin,  Ma Ping-Zhun,  Zhong Ying,  Liu Hai-Tao. Broadband Enhancement of the Spontaneous Emission by an Optical Dipole Nanoantenna on Metallic Substrate: an Intuitive Model of Surface Plasmon Polariton. Acta Physica Sinica, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212290
    [4] Zhang Duo-Duo, Liu Xiao-Feng, Qiu Jian-Rong. Ultrafast optical switches and pulse lasers based on strong nonlinear optical response of plasmon nanostructures. Acta Physica Sinica, 2020, 69(18): 189101. doi: 10.7498/aps.69.20200456
    [5] Liu Liang, Han De-Zhuan, Shi Lei. Plasmonic band structures and its applications. Acta Physica Sinica, 2020, 69(15): 157301. doi: 10.7498/aps.69.20200193
    [6] Wu Han, Wu Jing-Yu, Chen Zhuo. Strong coupling between metasurface based Tamm plasmon microcavity and exciton. Acta Physica Sinica, 2020, 69(1): 010201. doi: 10.7498/aps.69.20191225
    [7] Zhang Bao-Bao, Zhang Cheng-Yun, Zhang Zheng-Long, Zheng Hai-Rong. Surface plasmon mediated chemical reaction. Acta Physica Sinica, 2019, 68(14): 147102. doi: 10.7498/aps.68.20190345
    [8] Li Pan. Research progress of plasmonic nanofocusing. Acta Physica Sinica, 2019, 68(14): 146201. doi: 10.7498/aps.68.20190564
    [9] Zhang Wen-Jun, Gao Long, Wei Hong, Xu Hong-Xing. Modulation of propagating surface plasmons. Acta Physica Sinica, 2019, 68(14): 147302. doi: 10.7498/aps.68.20190802
    [10] Li Xin, Wu Li-Xiang, Yang Yuan-Jie. Enhanced near field focus steering of rectangular nanoslit metasurface structure. Acta Physica Sinica, 2019, 68(18): 187103. doi: 10.7498/aps.68.20190728
    [11] Wang Han-Cong, Li Zhi-Peng. Advances in surface-enhanced optical forces and optical manipulations. Acta Physica Sinica, 2019, 68(14): 144101. doi: 10.7498/aps.68.20190606
    [12] Zhou Li, Wang Qu-Quan. Plasmon resonance energy transfer and research progress in plasmon-enhanced photocatalysis. Acta Physica Sinica, 2019, 68(14): 147301. doi: 10.7498/aps.68.20190276
    [13] Chen Lu, Chen Yue-Gang. Surface plasmon polaritons’ propagation controlled by metal-photorefractive material composite holographical structure. Acta Physica Sinica, 2019, 68(6): 067101. doi: 10.7498/aps.68.20181664
    [14] Zhou Qiang, Lin Shu-Pei, Zhang Pu, Chen Xue-Wen. Quasinormal mode analysis of extremely localized optical field in body-of-revolution plasmonic structures. Acta Physica Sinica, 2019, 68(14): 147104. doi: 10.7498/aps.68.20190434
    [15] Liu Zi, Zhang Heng, Wu Hao, Liu Chang. Enhancement of photoluminescence from zinc oxide by aluminum nanoparticle surface plasmon. Acta Physica Sinica, 2019, 68(10): 107301. doi: 10.7498/aps.68.20190062
    [16] Cheng Zi-Qiang, Shi Hai-Quan, Yu Ping, Liu Zhi-Min. Surface-enhanced Raman scattering effect of silver nanoparticles array. Acta Physica Sinica, 2018, 67(19): 197302. doi: 10.7498/aps.67.20180650
    [17] Zhu Xue-Tao, Guo Jian-Dong. Development of novel high-resolution electron energy loss spectroscopy and related studies on surface excitations. Acta Physica Sinica, 2018, 67(12): 127901. doi: 10.7498/aps.67.20180689
    [18] Wang Dong, Xu Jun, Chen Yi-Hang. Broadband absorption caused by coupling of epsilon-near-zero mode with plasmon mode. Acta Physica Sinica, 2018, 67(20): 207301. doi: 10.7498/aps.67.20181106
    [19] Huang Zhi-Fang, Ni Ya-Xian, Sun Hua. Localized surface plasmon resonance and the size effects of magneto-optic rods. Acta Physica Sinica, 2016, 65(11): 114202. doi: 10.7498/aps.65.114202
    [20] Zhu Hua, Yan Zhen-Dong, Zhan Peng, Wang Zhen-Lin. Enhanced third harmonic generation by localized surface plasmon excitation. Acta Physica Sinica, 2013, 62(17): 178104. doi: 10.7498/aps.62.178104
Metrics
  • Abstract views:  22105
  • PDF Downloads:  1373
  • Cited By: 0
Publishing process
  • Received Date:  09 March 2019
  • Accepted Date:  10 April 2019
  • Available Online:  01 July 2019
  • Published Online:  20 July 2019

/

返回文章
返回