Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Barium as doping element tuning both toxicity and optoelectric properties of lead-based halide perovskites

Wang Xue-Ting Fu Yu-Hao Na Guang-Ren Li Hong-Dong Zhang Li-Jun

Citation:

Barium as doping element tuning both toxicity and optoelectric properties of lead-based halide perovskites

Wang Xue-Ting, Fu Yu-Hao, Na Guang-Ren, Li Hong-Dong, Zhang Li-Jun
PDF
HTML
Get Citation
  • Organic-inorganic halide perovskites ABX3 (A = CH3NH3, HC(NH2)2; B = Pb; X = Cl, Br, I) have recently attracted increasing attention due to their advanced optoelectronic properties. However, the poor stability and toxicity of organic lead halogen perovskites are still a major challenge for deploying the outdoor solar cells. Element substitution is a simple and effective strategy to solve these problems. For example, the substitution of the I ions with Cl and Br has been regarded as a reliable method to improve the device stability. A-site engineering, i.e., replacing organic ions with inorganic cations (such as Cs+, Rb+), has also been reported. The B-site alloying approach has been demonstrated with Zn, Sr, Sn, etc. Inorganic halide perovskites can be synthesized by the low-cost solution spin-coating method and have similar optoelectronic properties and improved stability to their organic counterparts. Here in this paper, we report a comprehensive study of the alloyed perovskite CsPb1–xBaxX3 (X = Cl, Br, I) by combining the disorder alloy structure search method with first-principles energy calculations. We find that it is not easy to dope barium into the perovskite lattice when Ba concentration is low and the stable disordered solid solution can exist in the high Ba concentration case. Carrier effective mass and bandgap increase with the increase of Ba concentration and the bandgap change range is wide, owing to the difference in both electronegativity and ionic radius between Pb and Ba. After inducing Ba into CsPb1–xBaxX3 (X = Cl, Br, I), the higher electron concentration on the I sites also enhances the Coulomb interaction of the Pb—I bonds. Moreover, the electrons and holes tend to be located on Pb sites, and this may give rise to the formation of local potential wells, which would further induce the large lattice deformation to accommodate the self-trapped excitons. Especially, CsPbI3-Pnma perovskite is metastable in the ambient environment with a suitable photon absorption threshold. The CsPb1–xBaxI3 can be used as a capping layer on CsPbI3 in solar cells, thereby significantly improving the power conversion efficiency and long-term stability. Overall, the alloyed perovskite CsPb1–xBaxX3 (X = Cl, Br, I) with high Ba concentration can be stable and less-toxic, and they can be used in short wave light-emitting diodes, radiation detectors or other fields because of their large bandgaps (> 2.8 eV).
      Corresponding author: Li Hong-Dong, hdli@jlu.edu.cn ; Zhang Li-Jun, lijun_zhang@jlu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61722403).
    [1]

    Bell L E 2008 Science 321 1457Google Scholar

    [2]

    Zou C, Zhao Q, Zhang G, Xiong B 2016 Natural Gas Industry B 3 1Google Scholar

    [3]

    Lenzen M 2008 Energy Conversion and Management 49 2178Google Scholar

    [4]

    Polman A, Knight M, Garnett E C, Ehrler B, Sinke W C 2016 Science 352 aad4424Google Scholar

    [5]

    Milan P, Wächter M, Peinke J 2013 Phys. Rev. Lett. 110 138701Google Scholar

    [6]

    Lewis N S 2007 Science 315 798Google Scholar

    [7]

    Dong Q, Fang Y, Shao Y, Mulligan P, Qiu J, Cao L, Huang J 2015 Science 347 967Google Scholar

    [8]

    Xing G, Mathews N, Sun S, Lim S S, Lam Y M, Gratzel M, Mhaisalkar S, Sum T C 2013 Science 342 344Google Scholar

    [9]

    Han Q, Bae S H, Sun P, Hsieh Y T, Yang Y M, Rim Y S, Zhao H, Chen Q, Shi W, Li G, Yang Y 2016 Adv. Mater. 28 2253Google Scholar

    [10]

    Chen H, Xiang S, Li W, Liu H, Zhu L, Yang S 2018 Solar RRL 2 1700188Google Scholar

    [11]

    Shang M H, Zhang J, Zhang P, Yang Z, Zheng J, Haque M A, Yang W, Wei S H, Wu T 2019 J. Phys. Chem. Lett. 10 59Google Scholar

    [12]

    Huang, Y, Sun Q D, Xu W, He Y, Yin W J 2017 Acta Phys.-Chim. Sin. 33 1730

    [13]

    Qin X, Zhao Z, Wang Y, Wu J, Jiang Q, You J 2017 J. Semicond. 38 011002Google Scholar

    [14]

    Linaburg M R, McClure E T, Majher J D, Woodward P M 2017 Chem. Mater. 29 3507Google Scholar

    [15]

    Wu M C, Chen W C, Chan S H, Su W F 2018 Appl. Surf. Sci. 429 9Google Scholar

    [16]

    Lau C F J, Zhang M, Deng X, Zheng J, Bing J, Ma Q, Kim J, Hu L, Green M A, Huang S, Ho-Baillie A 2017 ACS Energy Lett. 2 2319Google Scholar

    [17]

    Navas J, Sánchez-Coronilla A, Gallardo J J, Cruz Hernández N, Piñero J C, Alcántara R, Fernández-Lorenzo C, De los Santos D M, Aguilar T, Martín-Calleja J 2015 Nanoscale 7 6216Google Scholar

    [18]

    Li F, Xia Z, Gong Y, Gu L, Liu Q 2017 J. Mater. Chem. C 5 9281Google Scholar

    [19]

    Bechtel J S, van der Ven A 2018 Phys. Rev. Mater. 2 045401Google Scholar

    [20]

    Fu Y, Rea M T, Chen J, Morrow D J, Hautzinger M P, Zhao Y, Pan D, Manger L H, Wright J C, Goldsmith R H, Jin S 2017 Chem. Mater. 29 8385Google Scholar

    [21]

    Wang P, Zhang X, Zhou Y, Jiang Q, Ye Q, Chu Z, Li X, Yang X, Yin Z, You J 2018 Nat. Commun. 9 2225Google Scholar

    [22]

    Ju M G, Dai J, Ma L, Zeng X C 2017 J. Am. Chem. Soc. 139 8038Google Scholar

    [23]

    Hao F, Stoumpos C C, Cao D H, Chang R P H, Kanatzidis M G 2014 Nature Photonics 8 489Google Scholar

    [24]

    Swarnkar A, Mir W J, Nag A 2018 ACS Energy Lett. 3 286Google Scholar

    [25]

    Xiang W, Wang Z, Kubicki D J, Tress W, Luo J, Prochowicz D, Akin S, Emsley L, Zhou J, Dietler G, Grätzel M, Hagfeldt A 2019 Joule 3 205Google Scholar

    [26]

    Pazoki M, Jacobsson T J, Hagfeldt A, Boschloo G, Edvinsson T 2016 Phys. Rev. B 93 144105Google Scholar

    [27]

    Huang Q, Zou Y, Bourelle S A, Zhai T, Wu T, Tan Y, Li Y, Li J, Duhm S, Song T, Wang L, Deschler F, Sun B 2019 Nanoscale Horizons DOI: 10.1039.C9NH00066F

    [28]

    Kumar A, Balasubramaniam K R, Kangsabanik J, Vikram, Alam A 2016 Phys. Rev. B 94 180105Google Scholar

    [29]

    Song J, Li J, Li X, Xu L, Dong Y, Zeng H 2015 Adv. Mater. 27 7162Google Scholar

    [30]

    Li X, Wu Y, Zhang S, Cai B, Gu Y, Song J, Zeng H 2016 Adv. Funct. Mater. 26 2435Google Scholar

    [31]

    van de Walle A, Tiwary P, de Jong M, Olmsted D L, Asta M, Dick A, Shin D, Wang Y, Chen L Q, Liu Z K 2013 Calphad 42 13Google Scholar

    [32]

    Hass K C, Davis L C, Zunger A 1990 Phys. Rev. B 42 3757Google Scholar

    [33]

    Jiang C, Stanek C R, Sickafus K E, Uberuaga B P 2009 Phys. Rev. B 79 104203Google Scholar

    [34]

    Shin D, van de Walle A, Wang Y, Liu Z K 2007 Phys. Rev. B 76 144204Google Scholar

    [35]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [36]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [37]

    Grimme S 2006 J. Comput. Chem. 27 1787Google Scholar

    [38]

    Gajdoš M, Hummer K, Kresse G, Furthmüller J, Bechstedt F 2006 Phys. Rev. B 73 045112Google Scholar

    [39]

    Hu J, Alicea J, Wu R, Franz M 2012 Phys. Rev. Lett. 109 266801Google Scholar

    [40]

    Feng Y, Ding H C, Du Y, Wan X, Wang B, Savrasov S Y, Duan C G 2014 J. Appl. Phys. 115 233901Google Scholar

    [41]

    Yun S, Zhou X, Even J, Hagfeldt A 2017 Angew. Chem. Int. Ed. 56 15806Google Scholar

    [42]

    Krukau A V, Vydrov O A, Izmaylov A F, Scuseria G E 2006 J. Chem. Phys. 125 224106Google Scholar

    [43]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [44]

    Medeiros P V C, Stafström S, Björk J 2014 Phys. Rev. B 89 041407Google Scholar

    [45]

    Medeiros P V C, Tsirkin S S, Stafström S, Björk J 2015 Phys. Rev. B 91 041116Google Scholar

    [46]

    Pauling L 1932 J. Am. Chem. Soc. 54 3570Google Scholar

    [47]

    Yu J, Kong J, Hao W, Guo X, He H, Leow W R, Liu Z, Cai P, Qian G, Li S, Chen X, Chen X 2019 Adv. Mater. 31 1806385

    [48]

    Tanaka K, Kondo T 2003 Sci. Technol. Adv. Mater. 4 599Google Scholar

    [49]

    Lee K J, Turedi B, Sinatra L, Zhumekenov A A, Maity P, Dursun I, Naphade R, Merdad N, Alsalloum A, Oh S, Wehbe N, Hedhili M N, Kang C H, Subedi R C, Cho N, Kim J S, Ooi B S, Mohammed O F, Bakr O M 2019 Nano Lett. 19 3535

    [50]

    Jiang Y, Qin C, Cui M, He T, Liu K, Huang Y, Luo M, Zhang L, Xu H, Wei J, Liu Z, Wang H, Kim G H, Yuan M, Chen J 2019 Nat. Commun. 10 1868Google Scholar

    [51]

    Zhang S, Yi C, Wang N, Sun Y, Zou W, Wei Y, Cao Y, Miao Y, Li R, Yin Y, Zhao N, Wang J, Huang W 2017 Adv. Mater. 29 1606600Google Scholar

    [52]

    Blancon J C, Stier A V, Tsai H, Nie W, Stoumpos C C, Traoré B, Pedesseau L, Kepenekian M, Katsutani F, Noe G T, Kono J, Tretiak S, Crooker S A, Katan C, Kanatzidis M G, Crochet J J, Evan J, Mohite A D 2018 Nat. Commun. 9 2254Google Scholar

    [53]

    Kulbak M, Cahen D, Hodes G 2015 J. Phys. Chem. Lett. 6 2452Google Scholar

  • 图 1  CsPb1-xBaxX3 (X = Cl, Br, I; x = 0, 0.25, 0.5, 0.75, 1)合金钙钛矿体系的(a)晶体结构示意图, (b)计算得到的形成能

    Figure 1.  (a) Schematic diagram of crystal structure, (b) density functional theory-calculated formation energies of the alloyed perovskite CsPb1-xBaxX3 (X = Cl, Br, I; x = 0, 0.25, 0.5, 0.75, 1).

    图 2  计算得到的CsPb1–xBaxI3合金钙钛矿体系的能带结构 (a) x = 0%; (b) x = 25%; (c) x = 50%; (d) x = 75%; (e) x = 100%; 其中, 图(b)−(d)是通过能带展开技术得到的, 彩色刻度尺代表指定波矢下穿过能量区间的原胞能带数目

    Figure 2.  Calculated band structures of the alloyed perovskite CsPb1–xBaxI3, x = (a) 0%, (b) 25%, (c) 50%, (d) 75%, (e) 100%; panels (b)−(d) are obtained by band unfolding technique. The color scale represents the number of the primitive cell bands crossing the energy interval at a given primitive wave vector.

    图 3  计算得到的CsPb1–xBaxX3 (X = Cl, Br, I; x = 0, 0.25, 0.5, 0.75, 1)合金钙钛矿体系的带隙变化规律

    Figure 3.  Calculated band gaps of the alloyed perovskite CsPb1–xBaxX3 (X = Cl, Br, I; x = 0, 0.25, 0.5, 0.75, 1) varied with Ba concentration.

    图 4  计算得到的CsPb1–xBaxI3 (x = 0, 0.25, 0.5, 0.75, 1)合金钙钛矿体系的(a)−(e)投影态密度, (f)总态密度

    Figure 4.  Calculated (a)−(e) Atomic-orbital-projected density of states (PDOS), (f) total density of states (TDOS) of the alloyed perovskite CsPb1–xBaxI3 (x = 0, 0.25, 0.5, 0.75, 1).

    图 5  计算得到的CsPb1-xBaxI3合金钙钛矿体系的部分电荷密度分布图样 (a), (f) 0%; (b), (g) 25%; (c), (h) 50%; (d), (i) 75%; (e), (j) 100%

    Figure 5.  Calculated partial charge distribution patterns of the alloyed perovskite CsPb1-xBaxI3: (a), (f) 0%; (b), (g) 25%; (c), (h) 50%; (d), (i) 75%; (e), (j) 100%.

    图 6  计算得到的CsPbX3和CsPb0.25Ba0.75X3 (X = Cl, Br, I)合金钙钛矿的光吸收谱

    Figure 6.  Calculated photo absorption spectra of the perovskite CsPbX3 and CsPb0.25Ba0.75X3 (X = Cl, Br, I).

    表 1  CsPbX3 (X = Cl, Br, I)的晶格常数[14,20]和带隙的理论计算值与实验值的对比

    Table 1.  Experimental lattice parameters and band gaps in comparison with the computational (this work) results for CsPbX3 (X = Cl, Br, I).

    晶格常数/Å 理论[实验] 带隙/eV
    a b c PBE HSE HSE + SOC 实验
    CsPbCl3 7.993 [7.902] 11.365 [11.248] 7.953 [7.899] 2.42 3.19 2.08 2.91[14]
    CsPbBr3 8.388 [8.252] 11.978 [11.753] 8.353 [8.203] 1.99 2.67 1.57 2.27[14]
    CsPbI3 9.021 [8.845] 12.768 [12.524] 8.760 [8.612] 1.74 2.32 1.23 1.75[20]
    DownLoad: CSV
  • [1]

    Bell L E 2008 Science 321 1457Google Scholar

    [2]

    Zou C, Zhao Q, Zhang G, Xiong B 2016 Natural Gas Industry B 3 1Google Scholar

    [3]

    Lenzen M 2008 Energy Conversion and Management 49 2178Google Scholar

    [4]

    Polman A, Knight M, Garnett E C, Ehrler B, Sinke W C 2016 Science 352 aad4424Google Scholar

    [5]

    Milan P, Wächter M, Peinke J 2013 Phys. Rev. Lett. 110 138701Google Scholar

    [6]

    Lewis N S 2007 Science 315 798Google Scholar

    [7]

    Dong Q, Fang Y, Shao Y, Mulligan P, Qiu J, Cao L, Huang J 2015 Science 347 967Google Scholar

    [8]

    Xing G, Mathews N, Sun S, Lim S S, Lam Y M, Gratzel M, Mhaisalkar S, Sum T C 2013 Science 342 344Google Scholar

    [9]

    Han Q, Bae S H, Sun P, Hsieh Y T, Yang Y M, Rim Y S, Zhao H, Chen Q, Shi W, Li G, Yang Y 2016 Adv. Mater. 28 2253Google Scholar

    [10]

    Chen H, Xiang S, Li W, Liu H, Zhu L, Yang S 2018 Solar RRL 2 1700188Google Scholar

    [11]

    Shang M H, Zhang J, Zhang P, Yang Z, Zheng J, Haque M A, Yang W, Wei S H, Wu T 2019 J. Phys. Chem. Lett. 10 59Google Scholar

    [12]

    Huang, Y, Sun Q D, Xu W, He Y, Yin W J 2017 Acta Phys.-Chim. Sin. 33 1730

    [13]

    Qin X, Zhao Z, Wang Y, Wu J, Jiang Q, You J 2017 J. Semicond. 38 011002Google Scholar

    [14]

    Linaburg M R, McClure E T, Majher J D, Woodward P M 2017 Chem. Mater. 29 3507Google Scholar

    [15]

    Wu M C, Chen W C, Chan S H, Su W F 2018 Appl. Surf. Sci. 429 9Google Scholar

    [16]

    Lau C F J, Zhang M, Deng X, Zheng J, Bing J, Ma Q, Kim J, Hu L, Green M A, Huang S, Ho-Baillie A 2017 ACS Energy Lett. 2 2319Google Scholar

    [17]

    Navas J, Sánchez-Coronilla A, Gallardo J J, Cruz Hernández N, Piñero J C, Alcántara R, Fernández-Lorenzo C, De los Santos D M, Aguilar T, Martín-Calleja J 2015 Nanoscale 7 6216Google Scholar

    [18]

    Li F, Xia Z, Gong Y, Gu L, Liu Q 2017 J. Mater. Chem. C 5 9281Google Scholar

    [19]

    Bechtel J S, van der Ven A 2018 Phys. Rev. Mater. 2 045401Google Scholar

    [20]

    Fu Y, Rea M T, Chen J, Morrow D J, Hautzinger M P, Zhao Y, Pan D, Manger L H, Wright J C, Goldsmith R H, Jin S 2017 Chem. Mater. 29 8385Google Scholar

    [21]

    Wang P, Zhang X, Zhou Y, Jiang Q, Ye Q, Chu Z, Li X, Yang X, Yin Z, You J 2018 Nat. Commun. 9 2225Google Scholar

    [22]

    Ju M G, Dai J, Ma L, Zeng X C 2017 J. Am. Chem. Soc. 139 8038Google Scholar

    [23]

    Hao F, Stoumpos C C, Cao D H, Chang R P H, Kanatzidis M G 2014 Nature Photonics 8 489Google Scholar

    [24]

    Swarnkar A, Mir W J, Nag A 2018 ACS Energy Lett. 3 286Google Scholar

    [25]

    Xiang W, Wang Z, Kubicki D J, Tress W, Luo J, Prochowicz D, Akin S, Emsley L, Zhou J, Dietler G, Grätzel M, Hagfeldt A 2019 Joule 3 205Google Scholar

    [26]

    Pazoki M, Jacobsson T J, Hagfeldt A, Boschloo G, Edvinsson T 2016 Phys. Rev. B 93 144105Google Scholar

    [27]

    Huang Q, Zou Y, Bourelle S A, Zhai T, Wu T, Tan Y, Li Y, Li J, Duhm S, Song T, Wang L, Deschler F, Sun B 2019 Nanoscale Horizons DOI: 10.1039.C9NH00066F

    [28]

    Kumar A, Balasubramaniam K R, Kangsabanik J, Vikram, Alam A 2016 Phys. Rev. B 94 180105Google Scholar

    [29]

    Song J, Li J, Li X, Xu L, Dong Y, Zeng H 2015 Adv. Mater. 27 7162Google Scholar

    [30]

    Li X, Wu Y, Zhang S, Cai B, Gu Y, Song J, Zeng H 2016 Adv. Funct. Mater. 26 2435Google Scholar

    [31]

    van de Walle A, Tiwary P, de Jong M, Olmsted D L, Asta M, Dick A, Shin D, Wang Y, Chen L Q, Liu Z K 2013 Calphad 42 13Google Scholar

    [32]

    Hass K C, Davis L C, Zunger A 1990 Phys. Rev. B 42 3757Google Scholar

    [33]

    Jiang C, Stanek C R, Sickafus K E, Uberuaga B P 2009 Phys. Rev. B 79 104203Google Scholar

    [34]

    Shin D, van de Walle A, Wang Y, Liu Z K 2007 Phys. Rev. B 76 144204Google Scholar

    [35]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [36]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [37]

    Grimme S 2006 J. Comput. Chem. 27 1787Google Scholar

    [38]

    Gajdoš M, Hummer K, Kresse G, Furthmüller J, Bechstedt F 2006 Phys. Rev. B 73 045112Google Scholar

    [39]

    Hu J, Alicea J, Wu R, Franz M 2012 Phys. Rev. Lett. 109 266801Google Scholar

    [40]

    Feng Y, Ding H C, Du Y, Wan X, Wang B, Savrasov S Y, Duan C G 2014 J. Appl. Phys. 115 233901Google Scholar

    [41]

    Yun S, Zhou X, Even J, Hagfeldt A 2017 Angew. Chem. Int. Ed. 56 15806Google Scholar

    [42]

    Krukau A V, Vydrov O A, Izmaylov A F, Scuseria G E 2006 J. Chem. Phys. 125 224106Google Scholar

    [43]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [44]

    Medeiros P V C, Stafström S, Björk J 2014 Phys. Rev. B 89 041407Google Scholar

    [45]

    Medeiros P V C, Tsirkin S S, Stafström S, Björk J 2015 Phys. Rev. B 91 041116Google Scholar

    [46]

    Pauling L 1932 J. Am. Chem. Soc. 54 3570Google Scholar

    [47]

    Yu J, Kong J, Hao W, Guo X, He H, Leow W R, Liu Z, Cai P, Qian G, Li S, Chen X, Chen X 2019 Adv. Mater. 31 1806385

    [48]

    Tanaka K, Kondo T 2003 Sci. Technol. Adv. Mater. 4 599Google Scholar

    [49]

    Lee K J, Turedi B, Sinatra L, Zhumekenov A A, Maity P, Dursun I, Naphade R, Merdad N, Alsalloum A, Oh S, Wehbe N, Hedhili M N, Kang C H, Subedi R C, Cho N, Kim J S, Ooi B S, Mohammed O F, Bakr O M 2019 Nano Lett. 19 3535

    [50]

    Jiang Y, Qin C, Cui M, He T, Liu K, Huang Y, Luo M, Zhang L, Xu H, Wei J, Liu Z, Wang H, Kim G H, Yuan M, Chen J 2019 Nat. Commun. 10 1868Google Scholar

    [51]

    Zhang S, Yi C, Wang N, Sun Y, Zou W, Wei Y, Cao Y, Miao Y, Li R, Yin Y, Zhao N, Wang J, Huang W 2017 Adv. Mater. 29 1606600Google Scholar

    [52]

    Blancon J C, Stier A V, Tsai H, Nie W, Stoumpos C C, Traoré B, Pedesseau L, Kepenekian M, Katsutani F, Noe G T, Kono J, Tretiak S, Crooker S A, Katan C, Kanatzidis M G, Crochet J J, Evan J, Mohite A D 2018 Nat. Commun. 9 2254Google Scholar

    [53]

    Kulbak M, Cahen D, Hodes G 2015 J. Phys. Chem. Lett. 6 2452Google Scholar

  • [1] Yan Zhi, Fang Cheng, Wang Fang, Xu Xiao-Hong. First-principles calculations of structural and magnetic properties of SmCo3 alloys doped with transition metal elements. Acta Physica Sinica, 2024, 73(3): 037502. doi: 10.7498/aps.73.20231436
    [2] Ding Li-Jie, Zhang Xiao-Tian, Guo Xin-Yi, Xue Yang, Lin Chang-Qing, Huang Dan. First-principles study of SrSnO3 as transparent conductive oxide. Acta Physica Sinica, 2023, 72(1): 013101. doi: 10.7498/aps.72.20221544
    [3] Luan Li-Jun, He Yi, Wang Tao, Liu Zong-Wen. First-principles study of e interface interaction and photoelectric properties of the solar cell heterojunction CdS/CdMnTe. Acta Physica Sinica, 2021, 70(16): 166302. doi: 10.7498/aps.70.20210268
    [4] Hu Qian-Ku, Qin Shuang-Hong, Wu Qing-Hua, Li Dan-Dan, Zhang Bin, Yuan Wen-Feng, Wang Li-Bo, Zhou Ai-Guo. First-principles calculations of stabilities and physical properties of ternary niobium borocarbides and tantalum borocarbides. Acta Physica Sinica, 2020, 69(11): 116201. doi: 10.7498/aps.69.20200234
    [5] Luo Xiong, Meng Wei-Wei, Chen Guo-Xu-Jia, Guan Xiao-Xi, Jia Shuang-Feng, Zheng He, Wang Jian-Bo. First-principles study of stability, electronic and optical properties of two-dimensional Nb2SiTe4-based materials. Acta Physica Sinica, 2020, 69(19): 197102. doi: 10.7498/aps.69.20200848
    [6] Yan Xiao-Tong, Hou Yu-Hua, Zheng Shou-Hong, Huang You-Lin, Tao Xiao-Ma. First-principles study of effects of Ga, Ge and As doping on electrochemical properties and electronic structure of Li2CoSiO4 serving as cathode material for Li-ion batteries. Acta Physica Sinica, 2019, 68(18): 187101. doi: 10.7498/aps.68.20190503
    [7] Zhang Shu-Ting, Sun Zhi, Zhao Lei. First-principles study of graphene nanoflakes with large spin property. Acta Physica Sinica, 2018, 67(18): 187102. doi: 10.7498/aps.67.20180867
    [8] Jia Wan-Li, Zhou Miao, Wang Xin-Mei, Ji Wei-Li. First-principles study on the optical properties of Fe-doped GaN. Acta Physica Sinica, 2018, 67(10): 107102. doi: 10.7498/aps.67.20172290
    [9] Ma Shuang, Wu Ren-Tu-Ya, O Tegus, Wu Xiao-Xia, Guan Peng-Fei, Bai Narsu. First principles study of mechanical properties of FeMnP1-xTx (T=Si, Ga, Ge) compounds. Acta Physica Sinica, 2017, 66(12): 126301. doi: 10.7498/aps.66.126301
    [10] Ye Hong-Jun, Wang Da-Wei, Jiang Zhi-Jun, Cheng Sheng, Wei Xiao-Yong. Ferroelectric phase transition of perovskite SnTiO3 based on the first principles. Acta Physica Sinica, 2016, 65(23): 237101. doi: 10.7498/aps.65.237101
    [11] Yu Zhi-Qiang. Electronic structure and photoelectric properties of OsSi2 epitaxially grown on a Si(111) substrate. Acta Physica Sinica, 2012, 61(21): 217102. doi: 10.7498/aps.61.217102
    [12] Liu Yue-Ying, Zhou Tie-Ge, Lu Yuan, Zuo Xu. First principles caculations of h-BN monolayer with group IA/IIA elements replacing B as impurities. Acta Physica Sinica, 2012, 61(23): 236301. doi: 10.7498/aps.61.236301
    [13] Yang Tian-Xing, Cheng Qiang, Xu Hong-Bin, Wang Yuan-Xu. First-principles study of elastic and electronic properties of several ternary transition-metal carbides. Acta Physica Sinica, 2010, 59(7): 4919-4924. doi: 10.7498/aps.59.4919
    [14] Zhang Xue-Jun, Gao Pan, Liu Qing-Ju. First-principles study on electronic structure and optical properties of anatase TiO2 codoped with nitrogen and iron. Acta Physica Sinica, 2010, 59(7): 4930-4938. doi: 10.7498/aps.59.4930
    [15] Wu Hong-Li, Zhao Xin-Qing, Gong Sheng-Kai. Effect of Nb on electronic structure of NiTi intermetallic compound: A first-principles study. Acta Physica Sinica, 2010, 59(1): 515-520. doi: 10.7498/aps.59.515
    [16] Hu Fang, Ming Xing, Fan Hou-Gang, Chen Gang, Wang Chun-Zhong, Wei Ying-Jin, Huang Zu-Fei. First-principles study on the electronic structures of the ladder compound NaV2O4F. Acta Physica Sinica, 2009, 58(2): 1173-1178. doi: 10.7498/aps.58.1173
    [17] Song Qing-Gong, Wang Yan-Feng, Song Qing-Long, Kang Jian-Hai, Chu Yong. First-principle study on the electronic structures of intercalation compound Ag1/4TiSe2. Acta Physica Sinica, 2008, 57(12): 7827-7832. doi: 10.7498/aps.57.7827
    [18] Ming Xing, Fan Hou-Gang, Hu Fang, Wang Chun-Zhong, Meng Xing, Huang Zu-Fei, Chen Gang. First-principles study on the electronic structures of spin-Peierls compound GeCuO3. Acta Physica Sinica, 2008, 57(4): 2368-2373. doi: 10.7498/aps.57.2368
    [19] Hou Qing-Yu, Zhang Yue, Chen Yue, Shang Jia-Xiang, Gu Jing-Hua. Effects of the concentration of oxygen vacancy of anatase on electric conducting performance studied by frist principles calculations. Acta Physica Sinica, 2008, 57(1): 438-442. doi: 10.7498/aps.57.438
    [20] Song Qing-Gong, Jiang En-Yong, Pei Hai-Lin, Kang Jian-Hai, Guo Ying. First principles computational study on the stability of Li ion-vacancy two-dimensional ordered structures in intercalation compounds LixTiS2. Acta Physica Sinica, 2007, 56(8): 4817-4822. doi: 10.7498/aps.56.4817
  • supplement 157101-20190596补充材料.pdf supplement
Metrics
  • Abstract views:  10821
  • PDF Downloads:  286
  • Cited By: 0
Publishing process
  • Received Date:  23 April 2019
  • Accepted Date:  12 June 2019
  • Available Online:  01 August 2019
  • Published Online:  05 August 2019

/

返回文章
返回