Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design of a multimode interference waveguide semiconductor laser combining gain coupled distributed feedback grating

Qiu Cheng Chen Yong-Yi Gao Feng Qin Li Wang Li-Jun

Citation:

Design of a multimode interference waveguide semiconductor laser combining gain coupled distributed feedback grating

Qiu Cheng, Chen Yong-Yi, Gao Feng, Qin Li, Wang Li-Jun
PDF
HTML
Get Citation
  • Semiconductor laser is one of the most critical components in the field of modern communication. Research and development of single-mode semiconductor laser with high stability, high power, high beam quality and narrow line width is an important research area in this field. In this paper, A novel edge-emitting semiconductor laser diode structure is proposed. In the structure an active multimode interference waveguide structure serves as a main gain region. To modulate the longitudinal mode of the laser, a gain-coupled distributed feedback(DFB) laser based on high order surface gain coupled grating is introduced into the structure as well. The novel structure is then fabricated and compared with an conventional DFB laser. The experimental results show that higher slope efficiency and output power are achieved with the proposed structure than those with the conventional distributed feedback semiconductor lasers. The novel structure is also compared with conventional MMI laser with only Fabry-Parot(FP) cavity. The result shows that the proposed structure has higher beam quality and better stability than the FP cavity multimode interference waveguide lasers. To enhance the gain contrast in the quantum wells without introducing the effective index-coupled effect, the groove length and depth are well designed. Our device provides a single longitudinal mode with the maximum CW output power up to 53.8 mW/facet at 981.21 nm and 400 mA without facet coating, 3 dB linewidth < 13.6 pm, and SMSR > 32 dB. Optical bistable characteristic is observed with a threshold current difference. Meanwhile, by using high-order distribution feedback grating formed by shallow surface etching in the process of chip design and fabrication, the proposed structure of laser diode can realize regrowth freely and only micron-scale precision i-line lithography is required. Such a structure with simple fabrication process and low manufacturing cost has great potential for commercial mass production.
      Corresponding author: Qiu Cheng, qiucheng_hahaha@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51672264, 11874353, 61727822, 61674148).
    [1]

    Paschotta R, Nilsson J, Tropper A C, Hanna D C 1997 IEEE J. Quantum Electron. 33 1049Google Scholar

    [2]

    Jeon H, Verdiell J M, Ziari M, Mathur A 1998 IEEE J. Sel. Topics Quantum Electron. 3 1344

    [3]

    Dieckmann A 1994 Electron. Lett. 30 308Google Scholar

    [4]

    Tilma B W, Mangold M, Zaugg C A, et al. 2015 Light Sci. Appl. 4 e310Google Scholar

    [5]

    Zhou Z, Yin B, Michel J 2015 Light Sci. Appl. 4 e358Google Scholar

    [6]

    Garciıa-Meca C et al. 2017 Light Sci. Appl. 6 e17053Google Scholar

    [7]

    Nehrir A R, Repasky K S, Carlsten J L, Atmos J 2011 Ocean. Technol. 28 131Google Scholar

    [8]

    Jeon H, Verdiell J M, Ziari M, Mathur A 1998 IEEE J. Sel. Top. Quantum Electron. 3 1344

    [9]

    Zimmerman J W, Price R K, Reddy U, Dias N L, Coleman J J 2013 IEEE J. Sel. Top. Quantum Electron. 19 1503712Google Scholar

    [10]

    Burrows E C, Liou K Y 1990 Electron. Lett. 26 577Google Scholar

    [11]

    Kim I et al. 1994 Appl. Phys. Lett. 64 2764Google Scholar

    [12]

    Ishii H, Tohmori Y, Yamamoto M, Tamamura T, Yoshikuni Y 1994 IEEE Photon. Technol. Lett. 5 1683

    [13]

    Oberg M, Nilsson S, Streubel K, Wallin J 1993 IEEE Photon. Technol. Lett. 5 735Google Scholar

    [14]

    Kikuchi K, Tomofuji H 1990 IEEE J. Quantum Electron. 26 1717Google Scholar

    [15]

    Nawrocka M et al. 2014 Opt. Exp. 22 018949Google Scholar

    [16]

    Guo R J et al. 2016 IEEE Photon. J. 81 503007

    [17]

    Hong J, Kim H, Makino T 1998 J. Lightwave. Technol. 16 1323Google Scholar

    [18]

    Fricke J, John W, Klehr A, Ressel P, Weixelbaum L, Wenzel H, Erbert G 2012 Semicond. Sci. Technol. 27 055009Google Scholar

    [19]

    Nichols D T, Lopata J, Hobson W S, Sciortino P F 1993 Electron. Lett. 29 2035Google Scholar

    [20]

    Hamamoto K, De Merlier J, Ohya M, Shiba K, Naniwae K, Sudo S, Sasaki T 2005 IEICE Electron. Exp. 13 399

    [21]

    Hamamoto K, Gini E, Holtmann C et al. 2000 Quebec, Canada OMC. 2-1 27

    [22]

    Hinokuma Y, Yuen Z, Fukuda T 2013 IEICE Trans. Electron. 96 1413

    [23]

    Gao F et al. 2018 Opt. Comm. 410 936Google Scholar

    [24]

    Soldano L B, Pennings E C M 1995 J. Light. Technol. 13 615Google Scholar

  • 图 1  结合了增益耦合式DFB光栅的有源MMI激光芯片的结构示意图

    Figure 1.  Schematic of an active MMI laser chip with gain coupled DFB grating.

    图 2  增益耦合式DFB有源波导结构的示意图[23]

    Figure 2.  Schematic of gain coupled DFB active waveguide structure[23].

    图 3  增益耦合式DFB光栅的刻蚀深度与耦合系数κ的关系[23]

    Figure 3.  Relationship between groove depth and couple coefficient of gain coupled DFB grating[23].

    图 4  利用COMSOL Multiphysics仿真的的光束传播的光场分布状态[23] (a)绝缘槽深度600 nm; (b)绝缘槽深度1200 nm

    Figure 4.  Light field distribution of beam propagation simulated by COMSOL Multiphysic[23]: (a) Insulation groove depth 600 nm; (b) insulation groove depth 1200 nm.

    图 5  利用PICS 3D仿真的一个周期内的载流子分布情况

    Figure 5.  Simulation results of carrier distribution in one period using PICS 3D.

    图 6  量子阱上载流子浓度在两个光栅周期内的分布情况

    Figure 6.  Distribution of carrier concentration on quantum well in two grating period.

    图 7  不同隔离槽深度量子阱上载流子浓度在两个光栅周期内的分布情况[23]

    Figure 7.  Distribution of carrier concentration on quantum well in two grating periods with different isolation groove depth[23].

    图 8  利用MODE Solution软件仿真的1X1的MMI结构内的光场分布

    Figure 8.  Simulation results of light field distribution in 1X1 MMI structure using MODE Solution software.

    图 9  利用COMSOL MultiPhysics仿真的脊型波导内的二维光场模式分布

    Figure 9.  2D optical field mode distribution of ridge waveguide structure using Comsol Multiphysics.

    图 10  DFB增益耦合光栅部分的制备工艺流程

    Figure 10.  Schematic processing flow of gain coupled DFB laser diode.

    图 11  (a) DFB增益耦合光栅的俯视扫描电镜图像; (b) DFB增益耦合光栅的纵向截面扫描电镜图像; (c) 经过C-mount封装的增益耦合式DFB光栅MMI激光器的照片

    Figure 11.  (a) Overlooking SEM image of gain coupled DFB grating; (b) SEM image of longitude cross-section view of gain coupled DFB grating; (c) photo image of C-mounted MMI plus DFB laser diode.

    图 12  DFB + MMI激光器结构在连续电流工作状态下的功率-电流输出特性

    Figure 12.  P-I output characterization curve of MMI plus DFB laser diode under the condition of continuous current operation.

    图 13  FP腔的MMI激光器(a), 窄脊型DFB激光器(b)和MMI + DFB激光器(c)的光谱图

    Figure 13.  Measured spectrum of MMI with FP cavity laser (a), Stripe DFB laser (b) and MMI plus DFB laser (c).

    图 14  FP腔的MMI激光器(a), 窄脊型DFB激光器(b)和MMI + DFB激光器的远场分布(c)

    Figure 14.  Measured far field intensity of MMI with FP cavity laser (a), stripe DFB laser (b) and (c) MMI plus DFB laser.

  • [1]

    Paschotta R, Nilsson J, Tropper A C, Hanna D C 1997 IEEE J. Quantum Electron. 33 1049Google Scholar

    [2]

    Jeon H, Verdiell J M, Ziari M, Mathur A 1998 IEEE J. Sel. Topics Quantum Electron. 3 1344

    [3]

    Dieckmann A 1994 Electron. Lett. 30 308Google Scholar

    [4]

    Tilma B W, Mangold M, Zaugg C A, et al. 2015 Light Sci. Appl. 4 e310Google Scholar

    [5]

    Zhou Z, Yin B, Michel J 2015 Light Sci. Appl. 4 e358Google Scholar

    [6]

    Garciıa-Meca C et al. 2017 Light Sci. Appl. 6 e17053Google Scholar

    [7]

    Nehrir A R, Repasky K S, Carlsten J L, Atmos J 2011 Ocean. Technol. 28 131Google Scholar

    [8]

    Jeon H, Verdiell J M, Ziari M, Mathur A 1998 IEEE J. Sel. Top. Quantum Electron. 3 1344

    [9]

    Zimmerman J W, Price R K, Reddy U, Dias N L, Coleman J J 2013 IEEE J. Sel. Top. Quantum Electron. 19 1503712Google Scholar

    [10]

    Burrows E C, Liou K Y 1990 Electron. Lett. 26 577Google Scholar

    [11]

    Kim I et al. 1994 Appl. Phys. Lett. 64 2764Google Scholar

    [12]

    Ishii H, Tohmori Y, Yamamoto M, Tamamura T, Yoshikuni Y 1994 IEEE Photon. Technol. Lett. 5 1683

    [13]

    Oberg M, Nilsson S, Streubel K, Wallin J 1993 IEEE Photon. Technol. Lett. 5 735Google Scholar

    [14]

    Kikuchi K, Tomofuji H 1990 IEEE J. Quantum Electron. 26 1717Google Scholar

    [15]

    Nawrocka M et al. 2014 Opt. Exp. 22 018949Google Scholar

    [16]

    Guo R J et al. 2016 IEEE Photon. J. 81 503007

    [17]

    Hong J, Kim H, Makino T 1998 J. Lightwave. Technol. 16 1323Google Scholar

    [18]

    Fricke J, John W, Klehr A, Ressel P, Weixelbaum L, Wenzel H, Erbert G 2012 Semicond. Sci. Technol. 27 055009Google Scholar

    [19]

    Nichols D T, Lopata J, Hobson W S, Sciortino P F 1993 Electron. Lett. 29 2035Google Scholar

    [20]

    Hamamoto K, De Merlier J, Ohya M, Shiba K, Naniwae K, Sudo S, Sasaki T 2005 IEICE Electron. Exp. 13 399

    [21]

    Hamamoto K, Gini E, Holtmann C et al. 2000 Quebec, Canada OMC. 2-1 27

    [22]

    Hinokuma Y, Yuen Z, Fukuda T 2013 IEICE Trans. Electron. 96 1413

    [23]

    Gao F et al. 2018 Opt. Comm. 410 936Google Scholar

    [24]

    Soldano L B, Pennings E C M 1995 J. Light. Technol. 13 615Google Scholar

Metrics
  • Abstract views:  11381
  • PDF Downloads:  181
  • Cited By: 0
Publishing process
  • Received Date:  17 May 2019
  • Accepted Date:  29 May 2019
  • Available Online:  01 August 2019
  • Published Online:  20 August 2019

/

返回文章
返回