Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Conductivity of neutron star crust under superhigh magnetic fields and Ohmic decay of toroidal magnetic field of magnetar

Chen Jian-Ling Wang Hui Jia Huan-Yu Ma Zi-Wei Li Yong-Hong Tan Jun

Citation:

Conductivity of neutron star crust under superhigh magnetic fields and Ohmic decay of toroidal magnetic field of magnetar

Chen Jian-Ling, Wang Hui, Jia Huan-Yu, Ma Zi-Wei, Li Yong-Hong, Tan Jun
PDF
HTML
Get Citation
  • Magnetar is a kind of pulsar powered by magnetic field energy. Part of the X-ray luminosities of magnetars in quiescence have a thermal origin and can be fitted by a blackbody spectrum with temperature kT ~ 0.2-0.6 keV, much higher than the typical values for rotation-powered pulsars. The observation and theoretical study of magnetar are one of hot topics in the field of pulsar research. The activity and emission characteristics of magnetar can be attributed to internal superhigh magnetic field. According to the work of WGW19 and combining with the equation of state, we first calculate the electric conductivity of the crust under a strong magnetic field, and then calculate the toroidal magnetic field decay rate and magnetic energy decay rate by using an eigenvalue equation of toroidal magnetic field decay and considering the effect of general relativity. We reinvestigate the LX-Lrot relationship of 22 magnetars with persistent soft X-ray luminosities and obtain two new fitting formulas on LX-Lrot. We find that for the magnetars with LX < Lrot, the soft X-ray radiations may originate from their rotational energy loss rate, or from magneto-sphere flow and particle wind heating. For the magnetars with LX > Lrot, the Ohmic decay of crustal toroidal magnetic fields can provide their observed isotropic soft X-ray radiation and maintain higher thermal temperature.As for the initial dipole magnetic fields of magnetars, we mainly refer to the rersearch by Viganò et al. (Viganò D, Rea N, Pons J A, Perna R, Aguilera D N, Miralles J A 2013 Mon. Not. R. Astron. Soc. 434 123), because they first proposed the up-dated neutron star magneto-thermal evolution model, which can successfully explain the X-ray radiation and cooling mechanism of young pulsars including magnetars and high-magnetic field pulsars. Objectively speaking, as to the decay of toroidal magnetic fields, there are some differences between our theoretical calculations of magnetic energy release rates and the actual situation of magnetic field decay in magnetars, this is because the estimate of initial dipolar magnetic field, true age and the thickness of inner crust of a magnetar are somewhat uncertain. In addition, due to the interstellar-medium’s absorptions to soft X-ray and the uncertainties of distance estimations, the observed soft X-ray luminosities of magnetars have certain deviations. With the continuous improvement of observation, equipment and methods, as well as the in-depth development of theoretical research, our model will be further improved, and the theoretical results are better accordant with the high-energy observation of magnetars.We also discuss other possible anisotropy origins of soft X-ray fluxes of magnetars, such as the formation of magnetic spots and thermoplastic flow wave heating in the polar cap. Although anisotropic heating mechanisms are different from Ohmic decay, all of them require that there exist strong toroidal magnetic fields inside a magnetar. However, the anisotropic heating mechanisms require higher toroidal multipole fields inside a magnetar (such as magnetic octupole field) and are related to complex Hall drift: these may be our research subjects in the future.
      Corresponding author: Chen Jian-Ling, chenjianling62@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. U1631106, U1431125, 11573059, 11847307, U1831102), the Scientific and Technologial Innovation Programs of Higher Education Institutions in Shanxi, China (Grant No. 2019L0863), and the Scientific Research Project of Yuncheng University, China (Grant No. YQ-2014013).
    [1]

    Goldreich P, Julian W H 1969 Astrophys. J. 157 869Google Scholar

    [2]

    Goldreich P, Reisenegger A 1992 Astrophys. J. 395 250Google Scholar

    [3]

    Gao Z F, Wang N, Xu Y, Shan H, Li X D 2015 Astron. Nachr. 336 866Google Scholar

    [4]

    Gao Z F, Li X D, Wang N, Yuan J P, Wang P, Peng Q H, Du Y J 2016 Mon. Not. R. Astron. Soc. 456 55Google Scholar

    [5]

    Gao Z F, Shan H, Wang W, Wang N 2017 Astron. Nachr. 338 1066Google Scholar

    [6]

    Gao Z F, Wang N, Shan H 2017 Astron. Nachr. 338 1060Google Scholar

    [7]

    Gao Z F, Wang N, Shan H, Li X D, Wang W 2017 Astrophys. J. 849 19Google Scholar

    [8]

    Mereghetti S, Pons J A, Melatos A 2015 Space Sci. Rev. 191 315Google Scholar

    [9]

    Kaspi V M, Beloborodov A M 2017 Annu. Rev. Astron. Astr. 55 261Google Scholar

    [10]

    Gao Z F, Peng Q H, Wang N, Chou C K 2012 Chin. Phys. B 21 057109Google Scholar

    [11]

    Gao Z F, Peng Q H, Wang N, Yuan J P 2012 Astrophys. Space Sci. 342 55Google Scholar

    [12]

    Gao Z F, Wang N, Peng Q H, Li X D, Du Y J 2013 Mod. Phys. Lett. A 28 1350138

    [13]

    Yuan J P, Manchester R N, Wang N, Zhou X, Liu Z Y, Gao Z F 2010 Astrophys. J. Lett. 719 L111Google Scholar

    [14]

    Olausen S A, Kaspi V M 2014 Astrophys. J. Suppl. S. 212 6Google Scholar

    [15]

    Gao Z F, Peng Q H, Wang N, Chou C K, Huo W S 2011 Astrophys. Space Sci. 336 427Google Scholar

    [16]

    Flowers E, Ruderman M A 1977 Astrophys. J. 215 302Google Scholar

    [17]

    Yan W M, Wang N, Manchester R N, Wen Z G, Yuan J P 2018 Mon. Not. R. Astron. Soc. 476 3677

    [18]

    Gourgouliatos K N, Cumming A 2014 Mon. Not. R. Astron. Soc. 438 1618Google Scholar

    [19]

    Gourgouliatos K N, Cumming A 2014 Phys. Rev. Lett. 112 171101Google Scholar

    [20]

    Thompson C, Murray N 2001 Astrophys. J. 560 339Google Scholar

    [21]

    Tiengo A, Esposito P, Mereghetti S, Turolla R, Nobili L, Gastaldello F, Götz D, Israel G, Rea N, Stella L, Zane S, Bignami G 2013 Nature 500 312Google Scholar

    [22]

    Gao Z F, Wang N, Yuan J P, Jiang L, Song D L, 2011 Astrophys. Space Sci. 332 129Google Scholar

    [23]

    Urpin V A, Chanmugam G, Sang Y 1994 Astrophys. J. 433 780Google Scholar

    [24]

    Urpin V A, Muslimov A G 1992 Mon. Not. R. Astron. Soc. 256 261Google Scholar

    [25]

    Muslimov A, Page D 1996 Astrophys. J. 458 347Google Scholar

    [26]

    Mitra D, Konar S, Bhattacharya D 1999 Mon. Not. R. Astron. Soc. 307 459Google Scholar

    [27]

    Geppert U, Urpin V 1994 Mon. Not. R. Astron. Soc. 271 490Google Scholar

    [28]

    Konar S, Bhattacharya D 1997 Mon. Not. R. Astron. Soc. 284 311Google Scholar

    [29]

    Geppert U, Page D, Zannias T 2000 Phys. Rev. D 61 123004Google Scholar

    [30]

    Aguilera D N, Pons J A, Miralles J A 2008 Astron. Astrophys. 486 255Google Scholar

    [31]

    Beloborodov A M, Li X 2016 Astrophys. J. 833 261Google Scholar

    [32]

    Wald R M 1984 General Relativity (Chicago: University of Chicago Press)p 504

    [33]

    Wang H, Gao Z F, Wang N, Jia H Y, Li X D, Zhi Q J 2019 Publ. Astron. Soc. Pac. 131 054201Google Scholar

    [34]

    Esposito P, Rea N, Israel G L 2018 arXiv: 1803.057167

    [35]

    Li X H, Gao Z F, Li X D, Xu Y, Wang P, Wang N, Peng Q H 2016 Int. J. Mod. Phys. D 25 1650002

    [36]

    Baym G, Bethe H A, Pethick C J 1971 Nucl. Phys. A. 175 225Google Scholar

    [37]

    Baym G, Pethick C, Sutherland P 1971 Astrophys. J. 170 299Google Scholar

    [38]

    Lalazissis G A, König J, Ring P 1997 Phys. Rev. C. 55 540Google Scholar

    [39]

    Glendenning N K, Moszkowski S A 1991 Phys. Rev. Lett. 67 2414Google Scholar

    [40]

    Geng L, Toki H, Meng J 2005 Prog. Theor. Phys. 113 785Google Scholar

    [41]

    Singh D, Saxena G 2012 Int. J. Mod. Phys. E 21 1250076

    [42]

    Demorest P B, Pennucci T, Ransom S M, Roberts M S E, Hessels J W T 2010 Nature 467 1081Google Scholar

    [43]

    Shapiro S L, Teukolsky S A 1983 Black Holes, White Drarfs, and Neutron Stars (New: YorkJohn Wiley & Sons)

    [44]

    Potekhin A Y, Chabrier G 2013 Astron. Astrophys. 550 16Google Scholar

    [45]

    Sato T, Bamba A, Nakamura R, Ishida M 2010 Pub. Astron. Soc. J. 62 L33Google Scholar

    [46]

    Viganò D, Rea N, Pons J A, Perna R, Aguilera D N, Miralles J A 2013 Mon. Not. R. Astron. Soc. 434 123Google Scholar

    [47]

    Torii K, Kinugasa K, Katayama K, Tsunemi H, Yamauchi S 1998 Astrophys. J. 503 843Google Scholar

    [48]

    Rea N, Israel G L, Pons J A, Turolla R, Viganò D, Zane S, Esposito P, Perna R, Papitto A, Terreran G, Tiengo A, Salvetti D, Girart J M, Palau A, Possenti A, Götz D, Mignani R P, Ratti E, Stella L 2013 Astrophys. J. 770 65Google Scholar

    [49]

    Lamb R C, Fox D N, Macomb D J, Prince J A 2002 Astrophys. J. 574 L29Google Scholar

    [50]

    Dib R, Kaspi V M 2014 Astrophys. J. 784 37Google Scholar

    [51]

    Zhu W W, Kaspi V M, Dib R, Woods P M, Gavriil F P, Archibald A M 2008 Astrophys. J. 686 520

    [52]

    Fahlman G G, Gregory P C 1981 Nature 293 202

    [53]

    Rea N, Nichelli E, Israel G L, Perna R, Oosterbroek T, Parmar A N, Turolla R, Campana S, Stella L, Zane S, Angelini L 2007 Mon. Not. R. Astron. Soc. 381 293Google Scholar

    [54]

    An H, Kaspi V M, Archibald R, Cumming A, 2013 Astrophys. J. 763 82Google Scholar

    [55]

    Muno M P, Clark J S, Crowther P A, Dougherty S M, de Grijs R, Law C, McMillan S L W, Morris M R, Negueruela I, Pooley D, Portegies Z S, Yusef-Zadeh F 2006 Astrophys. J. Lett. 636 L41Google Scholar

    [56]

    Dib R, Kaspi V M, Gavriil F P 2009 Astrophys. J. 702 614Google Scholar

    [57]

    Tam C R, Gavriil F P, Dib R, Kaspi V M, Woods P M, Bassa C 2008 Astrophys. J. 677 503Google Scholar

    [58]

    Gaensler B M, McClure-Griffiths N M, Oey M S, Haverkorm M, Dickey J M, Green A J 2005 Astrophys. J. 620 L95Google Scholar

    [59]

    McGarry M B, Gaensler B M, Ransom S M, Kaspi V M, Veljkovik S 2005 Astrophys. J. 627 L137Google Scholar

    [60]

    Vasisht G, Gotthelf E V 1997 Astrophys. J. 486 L129Google Scholar

    [61]

    Camero A, Papitto A, Rea N, Viganò D, Pons J A, Tiengo A, Mereghetti S, Turolla R, Esposito P, Zane S, Israel G L, Götz D 2014 Mon. Not. R. Astron. Soc. 438 3291Google Scholar

    [62]

    Lin L, Kouveliotou C, Baring M G 2011 Astrophys. J. 739 87Google Scholar

    [63]

    Anderson G E, Gaensler B M, Slane P O, Rea N, Kaplan D L, Posselt B, Levin L, Johnston S, Murray S, Brogan C L, Bailes M, Bates S, Benjamin R A, Bhat N D R, Burgay M, Burke-Spolaor S, Chakrabarty D, D'Amico N, Drake J J, Esposito P, Grindlay J E, Hong J, Israel G L, Keith M J, Kramer M, Lazio T J W, Lee J C, Mauerhan J C, Milia S, Possenti A, Stappers B, Steeghs D T H 2012 Astrophys. J. 751 53Google Scholar

    [64]

    Tiengo A, Esposito P, Mereghetti S, Israel G L, Stella L, Turolla R, Zane S, Rea N, Götz D, Feroci M 2009 Mon. Not. R. Astron. Soc. 399 L74Google Scholar

    [65]

    Park S, Hughes J P, Slane P O, Burrows D N, Lee J J, Mori K 2012 Astrophys. J. 748 117Google Scholar

    [66]

    Mereghetti S, Esposito P, Tiengo A, Zane S, Turolla R, Stella L, Israel G L, Götz D, Feroci M 2006 Astrophys. J. 653 1423Google Scholar

    [67]

    Vrba F J, Henden A A, Luginbuhl C B, Guetter H H, Hartmann D H, Klose S 2000 Astrophys. J. 533 L17Google Scholar

    [68]

    Tendulkar S P, Cameron P, Brian K, Shrinivas R 2012 Astrophys. J. 761 76Google Scholar

    [69]

    Woods, Peter M, Kouveliotou C, Finger M H, Göǧüş E, Wilson, C A, Patel S K, Hurley K, Swank J H 2007 Astrophys. J. 654 470Google Scholar

    [70]

    Camilo F, Cognard I, Ransom S M, Halpern J P, Reynolds J, Zimmerman N, Gotthelf E V, Helfand D J, Demorest P, Theureau G, Backer D C 2007 Astrophys. J. 663 497Google Scholar

    [71]

    Dib R, Kaspi V M, Scholz P, Gavriil F P 2012 Astrophys. J. 748 3Google Scholar

    [72]

    Bernardini F, Israel G L, Stella L, Turolla R, Esposito P, Rea N, Zane S, Tiengo A, Campana S, Götz D, Mereghetti S, Romano P 2011 Astron. Astrophys. 529 A19Google Scholar

    [73]

    Rea N, Vigano D, Israel G L, Pons J A, Torres D F 2014 Astrophys. J. Lett. 781 L17Google Scholar

    [74]

    Zhou P, Chen Y, Li X D, Safi-Harb S, Mendez M, Terada Y, Sun W, Ge M Y 2014 Astrophys. J. Lett. 781 L16Google Scholar

    [75]

    Halpern J P, Gotthelf E V 2010 Astrophys. J. 710 941Google Scholar

    [76]

    Esposito P, Burgay M, Possenti A, Turolla R, Zane S, de Luca A, Tiengo A, Israel G, Mattana F, Mereghetti S, Bailes M, Romano P, Götz D, Rea N 2009 Mon. Not. R. Astron. Soc. 399 L44Google Scholar

    [77]

    Corbel S, Chapuis C, Dame T M, Durouchoux P 1999 Astrophys. J. 526 L29Google Scholar

    [78]

    Scholz P, Ng C Y, Livingstone M A, Kaspi V M, Cumming A, Archibald R F 2012 Astrophys. J. 761 66Google Scholar

    [79]

    Scholz P, Kaspi V M, Cumming A 2014 Astrophys. J. 786 62Google Scholar

    [80]

    Kargaltsev O, Kouveliotou C, Pavlov G G, Göǧüş E, Lin L, Wachter S, Griffith R L, Kaneko Y, Younes G 2012 Astrophys. J. 748 26Google Scholar

    [81]

    Leahy D A, Tian W W 2008 Astrophys. J. 135 167

    [82]

    Levin L, Bailes M, Bates S, Bhat N D R, Burgay Marta, Burke-Spolaor S, D'Amico N, Johnston S, Keith M, Kramer M, Milia S, Possenti A, Rea N, Stappers B, van Straten W 2010 Astrophys. J. Lett. 721 L33Google Scholar

    [83]

    Kaspi V M, Archibald R F, Bhalerao V, Dufour F, Gotthelf E V, An H J, Bachetti M, Beloborodov A M, Boggs S E, Christensen F E, Craig W W, Grefenstette B W, Hailey C J, Harrison F A, Kennea J A, Kouveliotou C, Madsen K K, Mori K, Markwardt C B, Stern D, Vogel J K, Zhang W W 2014 Astrophys. J. 786 84Google Scholar

    [84]

    Mori K, Gotthelf E V, Zhang S, An H J, Baganoff F K, Barrière N M, Beloborodov A M, Boggs S E, Christensen F E, Craig, W W, Dufour F, Grefenstette B W, Hailey C J, Harrison F A, Hong J, Kaspi V M, Kennea J A, Madsen K K, Markwardt C B, Nynka M, Stern D, Tomsick J A, Zhang W W 2013 Astrophys. J. Lett. 770 L23Google Scholar

    [85]

    Gotthelf E V, Vasisht G, Boylan-Kolchin M, Torii K 2000 Astrophys. J. 542 L37Google Scholar

    [86]

    Tong H, Xu R X 2013 Res. Astron. Astrophy. 13 1207Google Scholar

    [87]

    Livingstone Margaret A, Ng C Y, Kaspi Victoria A 2011 Astrophys. J. 730 66Google Scholar

    [88]

    Becker W, Truemper J 1997 Astron. Astrophys. 326 682

    [89]

    Shibata S, Watanabe E, Yatsu Y, Enoto T, Bamba A 2016 Astrophys. J. 833 14Google Scholar

    [90]

    Kaplan D L, van Kerkwijk M H 2009 Astrophys. J. 705 798Google Scholar

    [91]

    Haberl F 2007 Astrophys. Space Sci. 308 181Google Scholar

    [92]

    Bogdanov S, Ng C Y, Kaspi V M 2014 Astrophys. J. Lett. 792 L36

    [93]

    Coelho J G, Cáceres D L, de Lima R C R, Malheiro M, Rueda J A, Ruffini R 2017 Astrono. Astrophys. 599 A87Google Scholar

    [94]

    Gonzalaz D, Reisenegger A 2010 Astrono. Astrophys. 522 A16Google Scholar

    [95]

    Kothes R, Dougherty S M 2007 Astron. Astrophys. 468 993Google Scholar

    [96]

    Durant M, van Kerkwijk, Marten H 2006 Astrophys. J. 652 576Google Scholar

    [97]

    Tiengo A, Esposito P, Mereghetti S 2008 Astrophys. J. 680 L133Google Scholar

    [98]

    Kumar H S, Safi-Harb S 2010 Astrophys. J. Lett. 725 L191Google Scholar

    [99]

    Tian W W, Leahy D A 2008 Astrophys. J. 677 292Google Scholar

    [100]

    Gourgouliatos K N, Hollerbach R 2018 Astrophys. J. 852 21

    [101]

    Beloborodov A M 2011 High-Energy Emission from Pulsars and their Systems, Astrophysics and Space Science Proceedings (Berlin: Springer-Verlag Berlin Heidelberg) p299

    [102]

    Beloborodov A M, Levin Y 2014 Astrophys. J. Lett. 794 L24Google Scholar

  • 图 1  在NL3, GM1和TMA模型下中子星的质量和半径的关系

    Figure 1.  Relationships between mass and radius of neutron stars in NL3, GM1 and TMA model.

    图 2  在TMA模型中磁星的转动惯量I随质量m和半径R的关系

    Figure 2.  Relationship of moment of inertial I to mass M and radius R for magnetars in TMA models.

    图 3  在无力磁场结构位型下壳层归一化磁场分量${{{B_r}}/{\left( {B\cos \theta } \right)}}$(红线), ${{{B_\theta }}/{\left( {B\sin \theta } \right)}}$(蓝线), 及${{{B_\phi }}/{\left( {B\sin \phi } \right)}}$(黄线)与归一化径向坐标x的关系(选取μ = 1.676, 对应在TMA模型下的M = 1.45M, R = 11.77 km及I = 1.45 × 1045 g·cm2)

    Figure 3.  Normalized magnetic field components of the crustal confined for the force-free field: ${{{B_r}}/{\left( {B\cos \theta } \right)}}$(red line),${{{B_\theta }}/{\left( {B\sin \theta } \right)}}$(blue line), and ${{{B_\phi }}/{\left( {B\sin \phi } \right)}}$ (yellow line) vs. normalized radial coordinate x. Here we assume the parameter μ = 1.676, corresponding to M = 1.45M, R = 11.77 km and I = 1.45 × 1045 g·cm2 in the TMA model.

    图 4  磁星壳层电导率随密度、温度及不纯净度参数的变化  (a)电导率由电子-声子散射主导; (b)电导率由电子-杂质散射主导; 物态方程一律采用BBP 模型

    Figure 4.  Relationship of σ to ρ, Τ and Q in the inner crust for magnetar: (a) The conductivity due to electron-phonon scattering; (b) the conductivity due to electron-impurity scattering. The EOS of BBP model is used.

    图 5  磁星磁场欧姆衰变的数值模拟 (a) 在x = 1处极向磁场Bp随时间t的变化; (b) 在x = 1处极向磁场Bt随时间t的变化; (c) 在x = 1处极向磁场衰减率dBp/dt, 随时间t的变化; (d) 在x = 1处环向磁场衰减率dBt/dt, 随时间t的变化; (e) 极化磁场的能量衰减率Lp随时间t的变化; (e) 环向磁场的能量衰减率Lt随时间t的变化; 在(a)−(f)图中红色和蓝颜色的线分别表示$\sigma = 2.52 \times {10^{24}}\; {{\rm{s}}^{{\rm{ - 1}}}}$$\sigma = 8.75 \times {10^{24}} \;{{\rm{s}}^{{\rm{ - 1}}}}$

    Figure 5.  Numerical fitting of Ohmic decay for magnetars: (a) The poloidal magnetic field, Bp, as a function of t at x = 1; (b) the toroidal magnetic field, Bt, as a function of t when at x = 1; (c) the poloidal magnetic field decay rate, dBp/dt, as a function of t when at x = 1; (d) the toroidal field decay rate, dBt/dt, as a function of t when at x = 1; (e) the poloidal field energy decay rate, Lp, as a function of t; (f) the toroidal filed energy decay rate, Lt, as a function of t. The red and blue lines in (a)−(f) indicate$\sigma = 2.52 \times {10^{24}}\; {{\rm{s}}^{{\rm{ - 1}}}}$ and $\sigma = 8.75 \times {10^{24}}\; {{\rm{s}}^{{\rm{ - 1}}}}$, respectively.

    图 6  在各向同性加热模型下磁星及相关致密天体$L_{\rm{X}}^\infty $-${L_{{\rm{rot}}}}$的关系图

    Figure 6.  The $L_{\rm{X}}^\infty $-${L_{{\rm{rot}}}}$ plot for our magnetars and selected objects in isotropic heating models.

    图 7  在各向同性加热模型下拟合得到的磁星的旋转能损率与软X射线光度的关系

    Figure 7.  Fitting relationship between the soft X-ray luminosity and rotational energy loss rate of magnetars in the isotropic heating model.

    表 1  在NL3, GM1和TMA模型下饱和核物质特性.

    Table 1.  Saturation properties of nuclear matter in the parameterizations for NL3, GM1 and TMA models.

    RMF模型${\rho _0}$/fm–3${E_0}$/MeV${K_0}$/MeVm*K′/MeVJ/MeV${L_0}$/MeV$K_{{\rm{sym}}}^0$/MeV$Q_{{\rm{sym}}}^0$/MeV$K_{\tau ,V}^0$/MeV
    NL30.148–16.24271.530.60–202.9137.40118.53100.88181.31–698.85
    TMA0.147–16.33318.150.635572.1230.6690.1410.75–108.74–367.99
    GM10.153–16.02300.500.70215.6632.5294.0217.9825.01–478.64
    DownLoad: CSV

    表 2  在TMA模型中磁星的m, R, Rcore/R, μI的部分值

    Table 2.  Partial values of m, R, Rcore/R, μ and I for magnetars in TMA model.

    m/MR/kmRcore/R$\mu $I/g·cm2
    1.2011.420.9151.6781.03(1) × 1045
    1.4511.770.9171.6761.47(2) × 1045
    1.7212.050.9191.6751.87(2) × 1045
    2.03*11.250.9141.6792.09(2) × 1045
    注: *在TMA模型下由物态方程给出的最大中子星质量.
    DownLoad: CSV

    表 3  在不同温度和不同纯净度参数下磁星壳层电导率的部分值(采用BBP模型)

    Table 3.  Partial values of electrical conductivity for different temperatures and impurity parameters in the crust of magnetars. Here we use the equation of station (EOS) of BBP model.

    T = 1 × 108 KT = 2 × 108 KT = 3 × 108 K
    $Q = 1$$Q = 5$$Q = 10$$Q = 1$$Q = 5$$Q = 10$$Q = 1$$Q = 5$$Q = 10$
    $\rho $/g·cm–3ZA$\sigma $/1023 s–1$\sigma $/1023 s–1$\sigma $/1023 s–1$\sigma $/1023 s–1$\sigma $/1023 s–1$\sigma $/1023 s–1$\sigma $/1023 s–1$\sigma $/1023 s–1$\sigma $/1023 s–1
    Bp = 5 × 1014 G4.66 × 1011401270.4552.150.7521.691.150.5910.9980.8210.490
    6.61 × 1011401300.6412.580.8652.241.450.7031.180.9820.592
    8.79 × 1011411340.9283.220.9912.971.540.8221.311.200.702
    1.20 × 1012421371.263.721.153.882.210.9532.081.490.787
    1.47 × 1012421401.974.631.234.892.501.042.431.690.867
    2.00 × 1012431442.624.781.426.313.101.223.182.111.03
    2.67 × 1012441492.675.591.687.823.751.414.082.591.29
    3.51 × 1012451543.426.411.8510.304.521.625.203.141.40
    4.54 × 1012461614.207.262.0815.605.241.896.533.781.65
    6.25 × 1012481705.588.562.3717.506.422.188.604.681.96
    8.38 × 1012491816.959.672.6622.207.462.4910.905.552.23
    1.10 × 1013511938.5811.402.9927.908.752.8113.706.602.55
    1.50 × 10135421110.8012.903.4535.6010.403.2417.307.952.95
    1.99 × 10135723213.0014.903.9543.6012.103.7321.209.373.12
    2.58 × 10136025715.2016.904.4651.2013.804.2224.9010.803.88
    3.44 × 10136529617.7019.705.2259.6016.204.9328.9012.504.53
    4.68 × 10137235420.4023.506.2367.7019.105.8732.6014.605.37
    5.96 × 10137842121.7026.507.0869.0021.106.6333.8015.906.02
    8.01 × 10138954822.1031.208.4869.8023.807.8234.7017.206.95
    9.83 × 101310068323.2035.309.7869.8025.408.8336.0017.507.64
    1.30 × 101412099025.5040.3011.8070.8026.5010.1038.2018.108.20
    Bp = 3 × 1015 G4.66 × 1011401270.4632.210.7641.701.180.6031.040.8300.505
    6.61 × 1011401300.6492.670.8732.291.500.7211.361.040.605
    8.79 × 1011411340.9433.301.093.051.710.8421.421.290.723
    1.20 × 1012421371.323.771.193.982.321.012.211.590.854
    1.47 × 1012421401.704.761.365.092.841.192.661.870.937
    2.00 × 1012431442.004.851.656.413.291.303.402.281.12
    2.67 × 1012441492.665.661.817.993.791.434.182.651.31
    3.51 × 1012451543.486.491.9111.304.581.645.203.171.45
    4.54 × 1012461614.207.322.1115.805.311.926.563.811.69
    6.25 × 1012481705.588.642.4417.906.492.248.654.741.99
    8.38 × 1012491816.949.742.6923.107.532.5211.205.612.27
    1.10 × 1013511938.5812.003.0628.808.802.8613.806.652.68
    1.50 × 10135421110.9013.203.5035.7010.803.2917.407.982.97
    1.99 × 10135723213.1015.103.9843.7012.603.7721.309.403.45
    2.58 × 10136025715.3017.004.4851.3014.004.2425.0011.103.90
    3.44 × 10136529617.7019.905.2559.7016.404.9528.9012.704.55
    4.68 × 10137235420.5023.706.2567.7019.305.8932.7014.705.38
    5.96 × 10137842121.8026.707.1069.0021.306.6533.8016.006.03
    8.01 × 10138954822.1031.308.4969.8023.907.8334.7017.306.96
    9.83 × 101310068323.2035.409.7970.3025.508.8536.1017.707.65
    1.30 × 101412099025.5040.3011.8070.8025.5010.1028.2018.108.20
    DownLoad: CSV

    表 4  Bp(0) = 2.0 × 1015 G时Bp, dBp/dt, Lp, Bt, dBt/dt, LtLB的部分值(假定一个中等质量的磁星M = 1.45M, R = 11.77 km, Rc = 0.98 km, 对应着I = 1.47I45$\mu = 1.676$; 表格上和下半部分分别对应着$\sigma = 8.75 \times {10^{24}}\; {{\rm{s}}^{{\rm{ - 1}}}}$$\sigma = 2.52 \times {10^{24}}\; {{\rm{s}}^{{\rm{ - 1}}}}$)

    Table 4.  Partial values of Bp, dBp/dt, Lp, Bt, dBt/dt, Lt and LB when Bp(0) = 2.0 × 1015 G. Here we assume a medium-mass magnetar M = 1.45M, R = 11.77 km, Rc = 0.97 km, corresponding to I = 1.47I45 and $\mu = 1.676$, respectively. The top and bottom parts correspond to $\sigma = 8.75 \times {10^{24}}\; {{\rm{s}}^{{\rm{ - 1}}}}$ and $\sigma = 2.52 \times {10^{24}}\; {{\rm{s}}^{{\rm{ - 1}}}}$, respectively.

    $\sigma $/s–1t/a${B_{\rm{p}}}$/G${{{\rm{d}}B_{\rm{p}}^{}}/{{\rm{d}}t}}$/G·a–1${L_{\rm{p}}}$/erg·s–1${B_{\rm{t}}}$/G${{{\rm{d}}B_{\rm{t}}^{}}/{{\rm{d}}t}}$/G·a–1${L_{\rm{t}}}$/erg·s–1${L_B}$/erg·s–1
    8.75 × 10245.0 × 1021.995 × 1015–5.92 × 1091.57 × 10341.965 × 1016–5.84 × 10106.28 × 10356.44 × 1035
    2.0 × 1031.981 × 1015–4.65 × 1091.15 × 10341.953 × 1016–4.58 × 10104.59 × 10354.70 × 1035
    2.0 × 1041.954 × 1015–1.37 × 1083.61 × 10331.927 × 1016–1.35 × 10101.44 × 10351.48 × 1035
    2.0 × 1051.844 × 1015–5.91 × 1081.63 × 10331.818 × 1016–5.84 × 10106.52 × 10346.68 × 1034
    2.0 × 1061.373 × 1015–8.61 × 1071.56 × 10321.354 × 1016–8.48 × 1086.24 × 10336.40 × 1033
    2.0 × 1076.865 × 1014–4.36 × 1077.85 × 10316.772 × 1015–4.29 × 1083.14 × 10333.22 × 1033
    2.52 × 10245.0 × 1021.990 × 1015–1.51 × 10103.98 × 10341.96 × 1016–1.49 × 10111.59 × 10361.63 × 1036
    2.0 × 1031.977 × 1015–5.43 × 10101.65 × 10341.95 × 1016–5.36 × 10106.61 × 10356.77 × 1035
    2.0 × 1041.931 × 1015-–1.86 × 1094.74 × 10331.905 × 1016–1.83 × 10101.90 × 10351.94 × 1035
    2.0 × 1051.745 × 1015–7.21 × 1091.69 × 10331.721 × 1016–7.11 × 10106.76 × 10346.93 × 1034
    2.0 × 1068.712 × 1014–3.87 × 1094.46 × 10328.592 × 1015–3.82 × 10101.78 × 10341.83 × 1034
    2.0 × 1072.749 × 1013–1.33 × 1074.82 × 10292.711 × 1014–1.31 × 1081.93 × 10311.98 × 1031
    DownLoad: CSV

    表 5  具有软X射线辐射的22颗磁星的到达时间及其辐射特性

    Table 5.  The persistent timing, ages and emission characteristics for 22 magnetars with observed soft X-ray flux.

    SourceP/s$\dot{ P}$/10–11 s–1${\tau _{\rm{c}}}$/kaAge Est/kaAssocia.Method$L_{\rm{X}}^\infty $/erg·s–1Lrot./erg·s–1Refs.
    SGR 0418+57299.078390.0004(1)36000550SMC磁热模拟9.60 × 10293.1 × 1029[46,48,49]
    1E 2259+5866.979040.04837230.010—20SNR CTB109SNR年龄1.70 × 10347.37 × 1031[5052]
    4U 0142+618.688700.2022(4)68.068.0SMC特征年龄1.05 × 10351.85 × 1032[49,50,53]
    CXOU J16471010.61< 0.04> 420.0> 420Cluster Wdl特征年龄4.50 × 1032< 1.88 × 1031[54,55]
    1E 1048–59376.457872.2504.54.5GSH 288.3–0.5–28特征年龄4.90 × 10344.65 × 1033[5658]
    CXOU J0100438.020391.88(8)6.86.8SMC特征年龄6.50 × 10342.33 × 1033[49,59]
    1RXS J17084911.005021.9455(13)9.09.0MC 13A特征年龄4.20 × 10347.37 × 1032[50,55]
    1E 1841–04511.788984.092(15)4.700.5—1.0SNR Kes73SNR年龄1.84 × 10351.47 × 1033[50,60]
    SGR 0501+45165.762060.594(2)16.004—6SNR HB9SNR年龄8.10 × 10321.85 × 1033[6163]
    SGR 0526–668.054(2)3.8(1)3.4004.8SNR N49SNR年龄1.89 × 10354.22 × 1033[64,65]
    SGR 1900+145.199879.2(4)0.9003.98—7.9Massive star Cluster自行年龄9.00 × 10343.79 × 1034[6668]
    SGR 1806–207.5477349.50000.2400.63—1.0W31, MC13A自行年龄1.63 × 10356.68 × 1034[68,69]
    XTE J1810–1975.540350.777(3)1111W31, MC13A特征年龄4.3 × 10312.93 × 1035[69,70]
    IE 1547–54082.072124.770.690.63SNR G327.24–013SNR年龄1.3 × 10333.11 × 1035[71,72]
    3XXMJ18524611.5587< 0.014> 13005—7SNR Kes 79SNR年龄< 4.0 × 1038< 4.8 × 1038[73,74]
    CXOU J1714053.825356.400.955CTB 37BSNR年龄5.6 × 10346.13 × 1034[45,75]
    SGR 1627–412.594581.9(4)2.25.0SNR G337.0–0.1SNR年龄3.6 × 10335.87 × 1034[76,77]
    Swift J1822–16068.437720.0021(2)63006300HII region特征年龄< 4.0 × 10292.0 × 1030[78,79]
    Swift J1834–08642.48230.796(12)4.960200SNR W41SNR年龄< 8.4 × 10303.1 × 1034[80,81]
    PSR J1622–49504.326(1)1.7(1)4.0≤ 6.0SNR G33.9+0.0SNR年龄4.40 × 10321.18 × 1034[63,82]
    SGR J1745–29003.76361.385(15)4.304.30Galaxy Center特征年龄1.10 × 10321.47 × 1034[83,84]
    PSR J1846–02580.326570.710700.730.9-4.3SNR Kes75SNR年龄1.90 × 10348.10 × 1036[49,85]
    DownLoad: CSV

    表 6  12颗旋转能损率远小于软X射线光度的磁星的辐射特性及磁场能衰变率

    Table 6.  The X-ray emission characteristics and magnetic field energy decay rates of 12 magnetars with rotational energy loss rates less than their soft X-ray luminosities.

    SourceBp(0)/GPL Ind.$T_{BB}^{\infty} $/keVD/kpc$F_{\rm{X}}^\infty $/erg·s–1·cm2$L_{\rm{X}}^\infty $/erg·s–1$L_B^{\rm{a}}$/erg·s–1$\eta _{}^{\rm{a}}$/%$L_B^{\rm{b}}$/erg·s–1$\eta _{}^{\rm{b}}$/%Ref.
    SGR 0418–57293.0 × 10140.302.02.0 × 10–119.60 × 10295.35 × 10320.312.26 × 10320.74[48,49,50]
    1E 2259+5865.0 × 10143.75(4)0.37(1)3.2(2)1.41 × 10–111.70 × 10346.5(1.0) × 103522(6)1.4(3) × 103547(8)[5052]
    CXOU J1647103.0 × 10143.86(22)0.59(6)3.9(7)2.54 × 10–114.50 × 10328.65 × 103393.62 × 103321[50,54,95]
    3XXMJ1852463.0 × 10140.67.11.0 × 10–154.0 × 10333.53 × 10343.11 × 1035[73,74]
    4U 0142+613.0 × 10153.88(1)0.413.6(4)6.97 × 10–111.0 × 10351.14 × 1036154.85 × 103537[50,53,96]
    1E1048–59371.0 × 10153.14(11)0.56(1)9.0(1.7)5.11 × 10–114.90 × 10347.19 × 1035123.08 × 103527[50,57,58]
    CXOU J0100431.0 × 10150.30(2)62.4(1.6)1.40 × 10–116.50 × 10346.82 × 1035163.22 × 103534[50,97]
    IRXS J1708491.0 × 10152.79(1)0.4563.8(5)2.43 × 10–114.20 × 10347.65 × 103593.23 × 103521[50,53,96]
    1E1841–0451.0 × 10151.9(2)0.45(3)8.6(1.1)2.13 × 10–111.84 × 10351.2(2) × 103626(4)5.9(7) × 103546(4)[50,98,99]
    SGR 0526–663.0 × 1015$2.5_{ - 0.12}^{ + 0.11}$0.44(2)53.6(1.2)5.50 × 10–111.89 × 10352.28 × 103687.11 × 103526[50,65]
    SGR1900+143.0 × 10151.9(1)0.47(2)13.0(1.2)4.82 × 10–129.0 × 10342.2(6) × 10367(1)7.8(8) × 103519(2)[50,66]
    SGR1806–203.0 × 10151.6(1)0.55(7)8.8(1.6)1.81 × 10–121.63 × 10353.8(4) × 10367.4(8)8.9(9) × 103526(2)[50,69]
    注: a表示$\sigma = 2.52 \times {10^{24} }\; { {\rm{s} }^{ {\rm{ - 1} } } }$的情况; b表示$\sigma = 8.75 \times {10^{24} } \;{ {\rm{s} }^{ {\rm{ - 1} } } }$的情况; PL Ind. 表示幂率指数.
    DownLoad: CSV
  • [1]

    Goldreich P, Julian W H 1969 Astrophys. J. 157 869Google Scholar

    [2]

    Goldreich P, Reisenegger A 1992 Astrophys. J. 395 250Google Scholar

    [3]

    Gao Z F, Wang N, Xu Y, Shan H, Li X D 2015 Astron. Nachr. 336 866Google Scholar

    [4]

    Gao Z F, Li X D, Wang N, Yuan J P, Wang P, Peng Q H, Du Y J 2016 Mon. Not. R. Astron. Soc. 456 55Google Scholar

    [5]

    Gao Z F, Shan H, Wang W, Wang N 2017 Astron. Nachr. 338 1066Google Scholar

    [6]

    Gao Z F, Wang N, Shan H 2017 Astron. Nachr. 338 1060Google Scholar

    [7]

    Gao Z F, Wang N, Shan H, Li X D, Wang W 2017 Astrophys. J. 849 19Google Scholar

    [8]

    Mereghetti S, Pons J A, Melatos A 2015 Space Sci. Rev. 191 315Google Scholar

    [9]

    Kaspi V M, Beloborodov A M 2017 Annu. Rev. Astron. Astr. 55 261Google Scholar

    [10]

    Gao Z F, Peng Q H, Wang N, Chou C K 2012 Chin. Phys. B 21 057109Google Scholar

    [11]

    Gao Z F, Peng Q H, Wang N, Yuan J P 2012 Astrophys. Space Sci. 342 55Google Scholar

    [12]

    Gao Z F, Wang N, Peng Q H, Li X D, Du Y J 2013 Mod. Phys. Lett. A 28 1350138

    [13]

    Yuan J P, Manchester R N, Wang N, Zhou X, Liu Z Y, Gao Z F 2010 Astrophys. J. Lett. 719 L111Google Scholar

    [14]

    Olausen S A, Kaspi V M 2014 Astrophys. J. Suppl. S. 212 6Google Scholar

    [15]

    Gao Z F, Peng Q H, Wang N, Chou C K, Huo W S 2011 Astrophys. Space Sci. 336 427Google Scholar

    [16]

    Flowers E, Ruderman M A 1977 Astrophys. J. 215 302Google Scholar

    [17]

    Yan W M, Wang N, Manchester R N, Wen Z G, Yuan J P 2018 Mon. Not. R. Astron. Soc. 476 3677

    [18]

    Gourgouliatos K N, Cumming A 2014 Mon. Not. R. Astron. Soc. 438 1618Google Scholar

    [19]

    Gourgouliatos K N, Cumming A 2014 Phys. Rev. Lett. 112 171101Google Scholar

    [20]

    Thompson C, Murray N 2001 Astrophys. J. 560 339Google Scholar

    [21]

    Tiengo A, Esposito P, Mereghetti S, Turolla R, Nobili L, Gastaldello F, Götz D, Israel G, Rea N, Stella L, Zane S, Bignami G 2013 Nature 500 312Google Scholar

    [22]

    Gao Z F, Wang N, Yuan J P, Jiang L, Song D L, 2011 Astrophys. Space Sci. 332 129Google Scholar

    [23]

    Urpin V A, Chanmugam G, Sang Y 1994 Astrophys. J. 433 780Google Scholar

    [24]

    Urpin V A, Muslimov A G 1992 Mon. Not. R. Astron. Soc. 256 261Google Scholar

    [25]

    Muslimov A, Page D 1996 Astrophys. J. 458 347Google Scholar

    [26]

    Mitra D, Konar S, Bhattacharya D 1999 Mon. Not. R. Astron. Soc. 307 459Google Scholar

    [27]

    Geppert U, Urpin V 1994 Mon. Not. R. Astron. Soc. 271 490Google Scholar

    [28]

    Konar S, Bhattacharya D 1997 Mon. Not. R. Astron. Soc. 284 311Google Scholar

    [29]

    Geppert U, Page D, Zannias T 2000 Phys. Rev. D 61 123004Google Scholar

    [30]

    Aguilera D N, Pons J A, Miralles J A 2008 Astron. Astrophys. 486 255Google Scholar

    [31]

    Beloborodov A M, Li X 2016 Astrophys. J. 833 261Google Scholar

    [32]

    Wald R M 1984 General Relativity (Chicago: University of Chicago Press)p 504

    [33]

    Wang H, Gao Z F, Wang N, Jia H Y, Li X D, Zhi Q J 2019 Publ. Astron. Soc. Pac. 131 054201Google Scholar

    [34]

    Esposito P, Rea N, Israel G L 2018 arXiv: 1803.057167

    [35]

    Li X H, Gao Z F, Li X D, Xu Y, Wang P, Wang N, Peng Q H 2016 Int. J. Mod. Phys. D 25 1650002

    [36]

    Baym G, Bethe H A, Pethick C J 1971 Nucl. Phys. A. 175 225Google Scholar

    [37]

    Baym G, Pethick C, Sutherland P 1971 Astrophys. J. 170 299Google Scholar

    [38]

    Lalazissis G A, König J, Ring P 1997 Phys. Rev. C. 55 540Google Scholar

    [39]

    Glendenning N K, Moszkowski S A 1991 Phys. Rev. Lett. 67 2414Google Scholar

    [40]

    Geng L, Toki H, Meng J 2005 Prog. Theor. Phys. 113 785Google Scholar

    [41]

    Singh D, Saxena G 2012 Int. J. Mod. Phys. E 21 1250076

    [42]

    Demorest P B, Pennucci T, Ransom S M, Roberts M S E, Hessels J W T 2010 Nature 467 1081Google Scholar

    [43]

    Shapiro S L, Teukolsky S A 1983 Black Holes, White Drarfs, and Neutron Stars (New: YorkJohn Wiley & Sons)

    [44]

    Potekhin A Y, Chabrier G 2013 Astron. Astrophys. 550 16Google Scholar

    [45]

    Sato T, Bamba A, Nakamura R, Ishida M 2010 Pub. Astron. Soc. J. 62 L33Google Scholar

    [46]

    Viganò D, Rea N, Pons J A, Perna R, Aguilera D N, Miralles J A 2013 Mon. Not. R. Astron. Soc. 434 123Google Scholar

    [47]

    Torii K, Kinugasa K, Katayama K, Tsunemi H, Yamauchi S 1998 Astrophys. J. 503 843Google Scholar

    [48]

    Rea N, Israel G L, Pons J A, Turolla R, Viganò D, Zane S, Esposito P, Perna R, Papitto A, Terreran G, Tiengo A, Salvetti D, Girart J M, Palau A, Possenti A, Götz D, Mignani R P, Ratti E, Stella L 2013 Astrophys. J. 770 65Google Scholar

    [49]

    Lamb R C, Fox D N, Macomb D J, Prince J A 2002 Astrophys. J. 574 L29Google Scholar

    [50]

    Dib R, Kaspi V M 2014 Astrophys. J. 784 37Google Scholar

    [51]

    Zhu W W, Kaspi V M, Dib R, Woods P M, Gavriil F P, Archibald A M 2008 Astrophys. J. 686 520

    [52]

    Fahlman G G, Gregory P C 1981 Nature 293 202

    [53]

    Rea N, Nichelli E, Israel G L, Perna R, Oosterbroek T, Parmar A N, Turolla R, Campana S, Stella L, Zane S, Angelini L 2007 Mon. Not. R. Astron. Soc. 381 293Google Scholar

    [54]

    An H, Kaspi V M, Archibald R, Cumming A, 2013 Astrophys. J. 763 82Google Scholar

    [55]

    Muno M P, Clark J S, Crowther P A, Dougherty S M, de Grijs R, Law C, McMillan S L W, Morris M R, Negueruela I, Pooley D, Portegies Z S, Yusef-Zadeh F 2006 Astrophys. J. Lett. 636 L41Google Scholar

    [56]

    Dib R, Kaspi V M, Gavriil F P 2009 Astrophys. J. 702 614Google Scholar

    [57]

    Tam C R, Gavriil F P, Dib R, Kaspi V M, Woods P M, Bassa C 2008 Astrophys. J. 677 503Google Scholar

    [58]

    Gaensler B M, McClure-Griffiths N M, Oey M S, Haverkorm M, Dickey J M, Green A J 2005 Astrophys. J. 620 L95Google Scholar

    [59]

    McGarry M B, Gaensler B M, Ransom S M, Kaspi V M, Veljkovik S 2005 Astrophys. J. 627 L137Google Scholar

    [60]

    Vasisht G, Gotthelf E V 1997 Astrophys. J. 486 L129Google Scholar

    [61]

    Camero A, Papitto A, Rea N, Viganò D, Pons J A, Tiengo A, Mereghetti S, Turolla R, Esposito P, Zane S, Israel G L, Götz D 2014 Mon. Not. R. Astron. Soc. 438 3291Google Scholar

    [62]

    Lin L, Kouveliotou C, Baring M G 2011 Astrophys. J. 739 87Google Scholar

    [63]

    Anderson G E, Gaensler B M, Slane P O, Rea N, Kaplan D L, Posselt B, Levin L, Johnston S, Murray S, Brogan C L, Bailes M, Bates S, Benjamin R A, Bhat N D R, Burgay M, Burke-Spolaor S, Chakrabarty D, D'Amico N, Drake J J, Esposito P, Grindlay J E, Hong J, Israel G L, Keith M J, Kramer M, Lazio T J W, Lee J C, Mauerhan J C, Milia S, Possenti A, Stappers B, Steeghs D T H 2012 Astrophys. J. 751 53Google Scholar

    [64]

    Tiengo A, Esposito P, Mereghetti S, Israel G L, Stella L, Turolla R, Zane S, Rea N, Götz D, Feroci M 2009 Mon. Not. R. Astron. Soc. 399 L74Google Scholar

    [65]

    Park S, Hughes J P, Slane P O, Burrows D N, Lee J J, Mori K 2012 Astrophys. J. 748 117Google Scholar

    [66]

    Mereghetti S, Esposito P, Tiengo A, Zane S, Turolla R, Stella L, Israel G L, Götz D, Feroci M 2006 Astrophys. J. 653 1423Google Scholar

    [67]

    Vrba F J, Henden A A, Luginbuhl C B, Guetter H H, Hartmann D H, Klose S 2000 Astrophys. J. 533 L17Google Scholar

    [68]

    Tendulkar S P, Cameron P, Brian K, Shrinivas R 2012 Astrophys. J. 761 76Google Scholar

    [69]

    Woods, Peter M, Kouveliotou C, Finger M H, Göǧüş E, Wilson, C A, Patel S K, Hurley K, Swank J H 2007 Astrophys. J. 654 470Google Scholar

    [70]

    Camilo F, Cognard I, Ransom S M, Halpern J P, Reynolds J, Zimmerman N, Gotthelf E V, Helfand D J, Demorest P, Theureau G, Backer D C 2007 Astrophys. J. 663 497Google Scholar

    [71]

    Dib R, Kaspi V M, Scholz P, Gavriil F P 2012 Astrophys. J. 748 3Google Scholar

    [72]

    Bernardini F, Israel G L, Stella L, Turolla R, Esposito P, Rea N, Zane S, Tiengo A, Campana S, Götz D, Mereghetti S, Romano P 2011 Astron. Astrophys. 529 A19Google Scholar

    [73]

    Rea N, Vigano D, Israel G L, Pons J A, Torres D F 2014 Astrophys. J. Lett. 781 L17Google Scholar

    [74]

    Zhou P, Chen Y, Li X D, Safi-Harb S, Mendez M, Terada Y, Sun W, Ge M Y 2014 Astrophys. J. Lett. 781 L16Google Scholar

    [75]

    Halpern J P, Gotthelf E V 2010 Astrophys. J. 710 941Google Scholar

    [76]

    Esposito P, Burgay M, Possenti A, Turolla R, Zane S, de Luca A, Tiengo A, Israel G, Mattana F, Mereghetti S, Bailes M, Romano P, Götz D, Rea N 2009 Mon. Not. R. Astron. Soc. 399 L44Google Scholar

    [77]

    Corbel S, Chapuis C, Dame T M, Durouchoux P 1999 Astrophys. J. 526 L29Google Scholar

    [78]

    Scholz P, Ng C Y, Livingstone M A, Kaspi V M, Cumming A, Archibald R F 2012 Astrophys. J. 761 66Google Scholar

    [79]

    Scholz P, Kaspi V M, Cumming A 2014 Astrophys. J. 786 62Google Scholar

    [80]

    Kargaltsev O, Kouveliotou C, Pavlov G G, Göǧüş E, Lin L, Wachter S, Griffith R L, Kaneko Y, Younes G 2012 Astrophys. J. 748 26Google Scholar

    [81]

    Leahy D A, Tian W W 2008 Astrophys. J. 135 167

    [82]

    Levin L, Bailes M, Bates S, Bhat N D R, Burgay Marta, Burke-Spolaor S, D'Amico N, Johnston S, Keith M, Kramer M, Milia S, Possenti A, Rea N, Stappers B, van Straten W 2010 Astrophys. J. Lett. 721 L33Google Scholar

    [83]

    Kaspi V M, Archibald R F, Bhalerao V, Dufour F, Gotthelf E V, An H J, Bachetti M, Beloborodov A M, Boggs S E, Christensen F E, Craig W W, Grefenstette B W, Hailey C J, Harrison F A, Kennea J A, Kouveliotou C, Madsen K K, Mori K, Markwardt C B, Stern D, Vogel J K, Zhang W W 2014 Astrophys. J. 786 84Google Scholar

    [84]

    Mori K, Gotthelf E V, Zhang S, An H J, Baganoff F K, Barrière N M, Beloborodov A M, Boggs S E, Christensen F E, Craig, W W, Dufour F, Grefenstette B W, Hailey C J, Harrison F A, Hong J, Kaspi V M, Kennea J A, Madsen K K, Markwardt C B, Nynka M, Stern D, Tomsick J A, Zhang W W 2013 Astrophys. J. Lett. 770 L23Google Scholar

    [85]

    Gotthelf E V, Vasisht G, Boylan-Kolchin M, Torii K 2000 Astrophys. J. 542 L37Google Scholar

    [86]

    Tong H, Xu R X 2013 Res. Astron. Astrophy. 13 1207Google Scholar

    [87]

    Livingstone Margaret A, Ng C Y, Kaspi Victoria A 2011 Astrophys. J. 730 66Google Scholar

    [88]

    Becker W, Truemper J 1997 Astron. Astrophys. 326 682

    [89]

    Shibata S, Watanabe E, Yatsu Y, Enoto T, Bamba A 2016 Astrophys. J. 833 14Google Scholar

    [90]

    Kaplan D L, van Kerkwijk M H 2009 Astrophys. J. 705 798Google Scholar

    [91]

    Haberl F 2007 Astrophys. Space Sci. 308 181Google Scholar

    [92]

    Bogdanov S, Ng C Y, Kaspi V M 2014 Astrophys. J. Lett. 792 L36

    [93]

    Coelho J G, Cáceres D L, de Lima R C R, Malheiro M, Rueda J A, Ruffini R 2017 Astrono. Astrophys. 599 A87Google Scholar

    [94]

    Gonzalaz D, Reisenegger A 2010 Astrono. Astrophys. 522 A16Google Scholar

    [95]

    Kothes R, Dougherty S M 2007 Astron. Astrophys. 468 993Google Scholar

    [96]

    Durant M, van Kerkwijk, Marten H 2006 Astrophys. J. 652 576Google Scholar

    [97]

    Tiengo A, Esposito P, Mereghetti S 2008 Astrophys. J. 680 L133Google Scholar

    [98]

    Kumar H S, Safi-Harb S 2010 Astrophys. J. Lett. 725 L191Google Scholar

    [99]

    Tian W W, Leahy D A 2008 Astrophys. J. 677 292Google Scholar

    [100]

    Gourgouliatos K N, Hollerbach R 2018 Astrophys. J. 852 21

    [101]

    Beloborodov A M 2011 High-Energy Emission from Pulsars and their Systems, Astrophysics and Space Science Proceedings (Berlin: Springer-Verlag Berlin Heidelberg) p299

    [102]

    Beloborodov A M, Levin Y 2014 Astrophys. J. Lett. 794 L24Google Scholar

  • [1] Chu Peng-Cheng, Liu He, Du Xian-Bin. Quark matter and quark star in color-flavor-locked phase. Acta Physica Sinica, 2024, 73(5): 052101. doi: 10.7498/aps.73.20231649
    [2] Dong Ai-Jun, Gao Zhi-Fu, Yang Xiao-Feng, Wang Na, Liu Chang, Peng Qiu-He. Modified pressure of relativistic electrons in a superhigh magnetic field. Acta Physica Sinica, 2023, 72(3): 030502. doi: 10.7498/aps.72.20220092
    [3] Wang Yi-Nong, Chu Peng-Cheng, Jiang Yao-Yao, Pang Xiao-Di, Wang Sheng-Bo, Li Pei-Xin. Proto-magnetars within quasiparticle model. Acta Physica Sinica, 2022, 71(22): 222101. doi: 10.7498/aps.71.20220795
    [4] Zhao Shi-Yi, Liu Cheng-Zhi, Huang Xiu-Lin, Wang Yi-Bo, Xu Yan. Effects of strong magnetic field on moment of inertia and surface gravitational redshift in neutron star. Acta Physica Sinica, 2021, 70(22): 222601. doi: 10.7498/aps.70.20211051
    [5] Bi Wei-Hong, Chen Jun-Gang, Zhang Sheng, Yu Teng-Fei, Zhang Yan-Jun, Hou Xu-Tao. Study on the influence factors of the concentration of heavy metals by spectrophotometry. Acta Physica Sinica, 2017, 66(7): 074206. doi: 10.7498/aps.66.074206
    [6] Song Dong-Ling, Ming Liang, Shan Hao, Liao Tian-He. Landau-level stability of electrons in superstrong magnetic fields and its influences on electron Fermi energy. Acta Physica Sinica, 2016, 65(2): 027102. doi: 10.7498/aps.65.027102
    [7] Liu Zhong-Shen, Tegus O, Ou Zhi-Qiang, Fan Wen-Di, Song Zhi-Qiang, Ha Si Chao Lu, Wei Wei, Han Rui. Thermomagnetic power generation of Mn1.2Fe0.8P1-xSix compounds in strong field of permanent magnet. Acta Physica Sinica, 2015, 64(4): 047103. doi: 10.7498/aps.64.047103
    [8] Gu Zhuo-Wei, Luo Hao, Zhang Heng-Di, Zhao Shi-Cao, Tang Xiao-Song, Tong Yan-Jin, Song Zhen-Fei, Zhao Jian-Heng, Sun Cheng-Wei. Experimental research on the technique of magnetic flux compression by explosive cylindrical implosion. Acta Physica Sinica, 2013, 62(17): 170701. doi: 10.7498/aps.62.170701
    [9] Yan Jun, Zeng Si-Liang, Zou Shi-Yang, Ni Fei-Fei, He Jian-Feng. Calculations of low-lying states of hydrogen atom in strong magnetic field by generalized pseudospectral method. Acta Physica Sinica, 2011, 60(4): 043201. doi: 10.7498/aps.60.043201
    [10] Zheng Yu-Jun, Xu Xian-Gang, Ji Zi-Wu. Optical properties of exciton and charged exciton in undoped ZnSe/BeTe type-Ⅱ quantum wells under high magnetic fields. Acta Physica Sinica, 2011, 60(4): 047805. doi: 10.7498/aps.60.047805
    [11] Zhou Yi, Wu Guo-Song, Dai Wei, Li Hong-Bo, Wang Ai-Ying. Accurate determination of optical constants and thickness of absorbing thin films by a combined ellipsometry and spectrophotometry approach. Acta Physica Sinica, 2010, 59(4): 2356-2363. doi: 10.7498/aps.59.2356
    [12] Liu Jing-Jing. Effect of superstrong magnetic field on neutrino energy loss of the nuclide 56Fe, 56Co, 56Ni, 56Mn and 56Cr by electron capture in the crust of neutron stars. Acta Physica Sinica, 2010, 59(7): 5169-5174. doi: 10.7498/aps.59.5169
    [13] Zhao An-Kun, Ren Zhong-Ming, Ren Shu-Yang, Cao Guang-Hui, Ren Wei-Li. Effect of high magnetic field on Te films prepared by vacuum evaporation. Acta Physica Sinica, 2009, 58(10): 7101-7107. doi: 10.7498/aps.58.7101
    [14] Zhang Jie, Liu Men-Quan, Wei Bing-Tao, Luo Zhi-Quan. The effect of strong magnetic field on proton branch of modified URCA process. Acta Physica Sinica, 2008, 57(9): 5448-5451. doi: 10.7498/aps.57.5448
    [15] Wang Wei, Zhang Xi-Juan, Yang Cui-Hong, Cheng Hai-Ying. ThemagnetocrystallineanisotropyofEr3 Ga5O1 2underhighmagneticfield. Acta Physica Sinica, 2002, 51(12): 2846-2848. doi: 10.7498/aps.51.2846
    [16] KANG JUN-YONG, TOZAWA SHINIRRO. CRYSTAL GROWTH IN A HIGH MAGNETIC FIELD. Acta Physica Sinica, 1996, 45(2): 324-329. doi: 10.7498/aps.45.324
    [17] CHEN SHI-GANG. COMMENTS ON "TRANSPORT PROCESS UNDER STRONG MAGNETIC FIELD". Acta Physica Sinica, 1982, 31(5): 690-692. doi: 10.7498/aps.31.690
    [18] ZHANG YU-HENG. THEORY OF OPTIMUM DESIGNING FOR THE SYSTEMS OF PULSE STRONG MAGNETIC FIELD. Acta Physica Sinica, 1980, 29(9): 1121-1134. doi: 10.7498/aps.29.1121
    [19] HUANG BEN-LI, PEI AI-LI, WANG CHUN-DEH. EFFECTS OF ALCOHOLS ON ATOMIC-ABSORPTION AND EMISSION FLAME PHOTOMETRIC DETERMINATION OF SODIUM. Acta Physica Sinica, 1966, 22(7): 733-742. doi: 10.7498/aps.22.733
    [20] G. O. STRIKER. ULTRAPHOTOMETER USING MAGNETICALLY MODULATED PHOTOMULTIPLIER. Acta Physica Sinica, 1958, 14(1): 23-36. doi: 10.7498/aps.14.23
Metrics
  • Abstract views:  8757
  • PDF Downloads:  50
  • Cited By: 0
Publishing process
  • Received Date:  19 May 2019
  • Accepted Date:  12 July 2019
  • Available Online:  01 September 2019
  • Published Online:  20 September 2019

/

返回文章
返回