Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Nonlinear evolution of stimulated scattering near 1/4 critical density

Wu Charles F. Zhao Yao Weng Su-Ming Chen Min Sheng Zheng-Ming

Citation:

Nonlinear evolution of stimulated scattering near 1/4 critical density

Wu Charles F., Zhao Yao, Weng Su-Ming, Chen Min, Sheng Zheng-Ming
PDF
HTML
Get Citation
  • Based on particle-in-cell simulations, the propagation of intense long pulse lasers in non-uniform plasma, and particularly, the formation of plasma density cavities caused by the nonlinear evolution of stimulated Raman scattering (SRS) near the quarter critical density, and its effects on parametric instabilities have been studied. It is found that the stimulated Raman scattering instability developed near the quarter critical density leads to the trapping of scattered light and subsequent formation of a local electromagnetic solitary wave. Its amplitude increases with the development of the SRS instability, which pushes surrounding electrons and ions to form a quasi-neutral density cavity. When the first density cavity is formed, the plasma density evolves in such a way that more density cavities are formed during the laser interaction and subsequently the plasma is split into a few discontinuous portions. This new density profile finally tends to suppress the development of both SRS and the stimulated Brillouin scattering (SBS) instabilities considerably.
      Corresponding author: Zhao Yao, yaozhao@siom.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11775144) and the Natural Science Foundation of Shanghai, China (Grant No. 19YF1453200)
    [1]

    Kruer W 1988 The Physics of Laser Plasma Interactions (New York: Addison-Wesley) p74

    [2]

    Kaw P K 2017 Rev. Mod. Plasma Phys. 1 2Google Scholar

    [3]

    Cheung P Y, Wong A Y, Darrow C B, Qian S Z 1982 Phys. Rev. Lett. 48 1348Google Scholar

    [4]

    Borghesi M, Bulanov S, Campbell D H, Clarke R J, Esirkepov T Zh, Galimberti M, Gizzi L A, MacKinnon A J, Naumova N M, Pegoraro F, Ruhl H, Schiavi A, Willi O 2002 Phys. Rev. Lett. 88 135002Google Scholar

    [5]

    Langdon A B, Lasinski B F 1983 Phys. Fluids 26 582Google Scholar

    [6]

    Weber S, Riconda C, Tikhonchuk V 2005 Phys. Rev. Lett. 94 055005Google Scholar

    [7]

    Klimo O, Weber S, Tikhonchuk V T, Limpouch J 2010 Plasma Phys. Control. Fusion 52 055013Google Scholar

    [8]

    Zhao Y, Sheng Z M, Weng S M, Ji S Z, Zhu J Q 2019 High Power Laser Sci. Eng. 7 e20Google Scholar

    [9]

    Klimo O, Tikhonchuk V T 2013 Plasma Phys. Control. Fusion 55 095002Google Scholar

    [10]

    Eliasson B 2013 Mod. Phys. Lett. B 27 1330005

    [11]

    Esirkepov T, Nishihara K, Bulanov S V, Pegoraro F 2002 Phys. Rev. Lett. 89 275002Google Scholar

    [12]

    盛政明, 张杰, 余玮 2003 物理学报 52 125Google Scholar

    Sheng Z M, Zhang J, Yu W 2003 Acta Phys. Sin. 52 125Google Scholar

    [13]

    Sheng Z M, Zhang J, Umstadter D 2003 Appl. Phys. B 77 673

    [14]

    Yu L L, Sheng Z M, Zhang J 2009 J. Opt. Soc. Am. B 26 2095Google Scholar

    [15]

    Xiao C Z, Liu Z J, Wu D, Zheng C Y, He X T 2015 Phys. Plasmas 22 052121Google Scholar

    [16]

    Craxton R S, Anderson K S, Boehly T R, Goncharov V N, Harding D R, Knauer J P, McCrory R L, McKenty P W, Meyerhofer D D, Myatt J F, Schmitt A J, Sethian J D, Short R W, Skupsky S, Theobald W, Kruer W L, Tanaka K, Betti R, Collins T J B, Delettrez J A, Hu S X, Marozas J A, Maximov A V, Michel D T, Radha P B, Regan S P, Sangster T C, Seka W, Solodov A A, Soures J M, Stoeckl C, Zuegel J D 2015 Phys. Plasmas 22 110501Google Scholar

    [17]

    Kaw P K, Kruer W L, Liu C S, Nishikawa K 1976 Advances in Plasma Physics (Vol. 6) (New York: John Wiley and Sons, Inc.)

    [18]

    Liu C S, Tripathi V K, Eliasson B 2019 High-Power Laser-Plasma Interaction (Cambridge: Cambridge University Press)

    [19]

    Pesme D, Laval G, Pellat R 1973 Phys. Rev. Lett. 31 203Google Scholar

    [20]

    Wang Y X, Wang Q, Zheng C Y, Liu Z J, Liu C S, He X T 2018 Phys. Plasmas 25 100702Google Scholar

    [21]

    Rosenbluth M N 1972 Phys. Rev. Lett. 29 565Google Scholar

    [22]

    Liu C S, Rosenbluth M N, White R B 1974 Phys. Fluids 17 1211Google Scholar

    [23]

    Zakharov V E 1972 Sov. Phys. JETP 35 908

    [24]

    Zhao Y, Yu L L, Weng S M, Ren C, Liu C S, Sheng Z M 2017 Phys. Plasmas 24 092116Google Scholar

    [25]

    Brady C 2014 Users Manual for the EPOCH PIC Codes (Coventry: University of Warwick) pp12-50

    [26]

    Naumova N M, Bulanov S V, Esirkepov T Zh, Farina D, Nishihara K, Pegoraro F, Ruhl H, Sakharov A S 2001 Phys. Rev. Lett. 87 185004Google Scholar

    [27]

    Esirkepov T Zh, Kamenets F F 1999 JETP Lett. 68 36

    [28]

    White R, Kaw P, Pesme D, Rosenbluth M N, Laval G, Huff R, Varma R 1974 Nucl. Fusion 14 45Google Scholar

    [29]

    Zhao Y, Zheng J, Chen M, Yu L L, Weng S M, Ren C, Liu C S, Sheng Z M 2014 Phys. Plasmas 21 112114Google Scholar

    [30]

    DuBois D F, Forslund D W 1974 Phys. Rev. Lett. 33 1013Google Scholar

    [31]

    Sheng Z M, Nishihara K, Honda T, Sentoku Y, Mima K, Bulanov S V 2001 Phys. Rev. E 64 066409Google Scholar

  • 图 1  (a)随时间变化的离子密度分布; (b) 2100T0时刻的离子密度分布

    Figure 1.  (a) Temporal and spatial variation of ion density distribution; (b) the ion density distribution at 2100T0. The red dotted line marks the density cavity with the width of 2λ0.

    图 2  (a)归一化电场Ey的时空演化图, 其中的归一化量纲El为入射激光的电场强度; (b) 0−2000T0, 200−400 μm等离子体中的电场Eykω空间中的分布; (c) 2000T0−4000T0, 200−400 μm等离子体中的电场Eykω空间中的分布

    Figure 2.  (a) Spatio-temporal evolution of the electric field Ey, Ey is normalized to El, which is the electric field intensity of incident laser; (b) distribution of electric field in (k, ω) space corresponding to the time window [0−2000]T0 and the space window [200−400] μm; (c) distribution of electric field in (k, ω) space corresponding to the time window [2000−4000]T0 and the space window [200−400] μm.

    图 3  (a)在不同的初始电子温度下, 1/4临界密度处等离子体密度坑的产生时间对比; (b)在不同的初始离子温度下, 1/4临界密度处等离子体密度坑的产生时间对比

    Figure 3.  (a) Comparison of the generation time of plasma density cavity with different initial electron temperatures at quarter critical density; (b) comparison of the generation time of plasma density cavity with different initial ion temperatures at quarter critical density.

    图 4  (a)随时空变化的离子密度分布; (b)密度坑产生后, 在3200T0时刻, 密度坑附近的离子被加速到较高的能量

    Figure 4.  (a) Temporal and spatial variation of ion density distribution; (b) after the formation of density cavities, the ions near the density cavities have been accelerated to a higher energy at the moment of 3200T0.

    图 5  (a), (c), (e)不同时间段中的离子密度在xt空间中的分布; (b), (d), (f)不同时间段中的纵向电场Exxω空间中的分布; 这些离子密度以及纵向电场的分布, 分别反映了不稳定区域或激光等离子体不稳定性的发展情况

    Figure 5.  (a), (c), (e) Temporal and spatial variation of ion density distribution in different time windows; (b), (d), (f) the longitudinal field Ex in (x, ω) space. The ion and Ex distribution represent the development of instability regions and parametric instability, respectively.

    图 6  (a), (c) 0−2000T0纵场Exk-ω空间的分布; (b), (d) 2000T0−4000T0纵场Exkω空间的分布, 相应频率与波矢的纵场Ex, 分别对应了SBS和SRS不稳定性的发展

    Figure 6.  (a), (c) The Ex distribution in (k, ω) space corresponding to the time window [0−2000]T0; (b), (d) the Ex distribution in (k, ω) space corresponding to the time window [2000T0−4000]T0. The longitudinal field Ex represents the development of SRS and SBS instabilities in the different time windows, respectively.

    图 7  (a)左行波在频率空间中随时间的变化; (b) SRS的份额随时间的变化; (c) SBS的份额随时间的变化

    Figure 7.  (a) The temporal evolution of left traveling wave in frequency space; (b) the temporal evolution of SRS; (c) the temporal evolution of SBS.

  • [1]

    Kruer W 1988 The Physics of Laser Plasma Interactions (New York: Addison-Wesley) p74

    [2]

    Kaw P K 2017 Rev. Mod. Plasma Phys. 1 2Google Scholar

    [3]

    Cheung P Y, Wong A Y, Darrow C B, Qian S Z 1982 Phys. Rev. Lett. 48 1348Google Scholar

    [4]

    Borghesi M, Bulanov S, Campbell D H, Clarke R J, Esirkepov T Zh, Galimberti M, Gizzi L A, MacKinnon A J, Naumova N M, Pegoraro F, Ruhl H, Schiavi A, Willi O 2002 Phys. Rev. Lett. 88 135002Google Scholar

    [5]

    Langdon A B, Lasinski B F 1983 Phys. Fluids 26 582Google Scholar

    [6]

    Weber S, Riconda C, Tikhonchuk V 2005 Phys. Rev. Lett. 94 055005Google Scholar

    [7]

    Klimo O, Weber S, Tikhonchuk V T, Limpouch J 2010 Plasma Phys. Control. Fusion 52 055013Google Scholar

    [8]

    Zhao Y, Sheng Z M, Weng S M, Ji S Z, Zhu J Q 2019 High Power Laser Sci. Eng. 7 e20Google Scholar

    [9]

    Klimo O, Tikhonchuk V T 2013 Plasma Phys. Control. Fusion 55 095002Google Scholar

    [10]

    Eliasson B 2013 Mod. Phys. Lett. B 27 1330005

    [11]

    Esirkepov T, Nishihara K, Bulanov S V, Pegoraro F 2002 Phys. Rev. Lett. 89 275002Google Scholar

    [12]

    盛政明, 张杰, 余玮 2003 物理学报 52 125Google Scholar

    Sheng Z M, Zhang J, Yu W 2003 Acta Phys. Sin. 52 125Google Scholar

    [13]

    Sheng Z M, Zhang J, Umstadter D 2003 Appl. Phys. B 77 673

    [14]

    Yu L L, Sheng Z M, Zhang J 2009 J. Opt. Soc. Am. B 26 2095Google Scholar

    [15]

    Xiao C Z, Liu Z J, Wu D, Zheng C Y, He X T 2015 Phys. Plasmas 22 052121Google Scholar

    [16]

    Craxton R S, Anderson K S, Boehly T R, Goncharov V N, Harding D R, Knauer J P, McCrory R L, McKenty P W, Meyerhofer D D, Myatt J F, Schmitt A J, Sethian J D, Short R W, Skupsky S, Theobald W, Kruer W L, Tanaka K, Betti R, Collins T J B, Delettrez J A, Hu S X, Marozas J A, Maximov A V, Michel D T, Radha P B, Regan S P, Sangster T C, Seka W, Solodov A A, Soures J M, Stoeckl C, Zuegel J D 2015 Phys. Plasmas 22 110501Google Scholar

    [17]

    Kaw P K, Kruer W L, Liu C S, Nishikawa K 1976 Advances in Plasma Physics (Vol. 6) (New York: John Wiley and Sons, Inc.)

    [18]

    Liu C S, Tripathi V K, Eliasson B 2019 High-Power Laser-Plasma Interaction (Cambridge: Cambridge University Press)

    [19]

    Pesme D, Laval G, Pellat R 1973 Phys. Rev. Lett. 31 203Google Scholar

    [20]

    Wang Y X, Wang Q, Zheng C Y, Liu Z J, Liu C S, He X T 2018 Phys. Plasmas 25 100702Google Scholar

    [21]

    Rosenbluth M N 1972 Phys. Rev. Lett. 29 565Google Scholar

    [22]

    Liu C S, Rosenbluth M N, White R B 1974 Phys. Fluids 17 1211Google Scholar

    [23]

    Zakharov V E 1972 Sov. Phys. JETP 35 908

    [24]

    Zhao Y, Yu L L, Weng S M, Ren C, Liu C S, Sheng Z M 2017 Phys. Plasmas 24 092116Google Scholar

    [25]

    Brady C 2014 Users Manual for the EPOCH PIC Codes (Coventry: University of Warwick) pp12-50

    [26]

    Naumova N M, Bulanov S V, Esirkepov T Zh, Farina D, Nishihara K, Pegoraro F, Ruhl H, Sakharov A S 2001 Phys. Rev. Lett. 87 185004Google Scholar

    [27]

    Esirkepov T Zh, Kamenets F F 1999 JETP Lett. 68 36

    [28]

    White R, Kaw P, Pesme D, Rosenbluth M N, Laval G, Huff R, Varma R 1974 Nucl. Fusion 14 45Google Scholar

    [29]

    Zhao Y, Zheng J, Chen M, Yu L L, Weng S M, Ren C, Liu C S, Sheng Z M 2014 Phys. Plasmas 21 112114Google Scholar

    [30]

    DuBois D F, Forslund D W 1974 Phys. Rev. Lett. 33 1013Google Scholar

    [31]

    Sheng Z M, Nishihara K, Honda T, Sentoku Y, Mima K, Bulanov S V 2001 Phys. Rev. E 64 066409Google Scholar

  • [1] Liu Qing-Kang, Zhang Xu, Cai Hong-Bo, Zhang En-Hao, Gao Yan-Qi, Zhu Shao-Ping. Suppression of stimulated Raman scattering kinetic bursts by intensity-modulated broadband laser. Acta Physica Sinica, 2024, 73(5): 055202. doi: 10.7498/aps.73.20231679
    [2] Shi Jiu-Lin, Xu Jin, Luo Ning-Ning, Wang Qing, Zhang Yu-Bao, Zhang Wei-Wei, He Xing-Dao. Enhanced stimulated Raman scattering by suppressing stimulated Brillouin scattering in liquid water. Acta Physica Sinica, 2019, 68(4): 044201. doi: 10.7498/aps.68.20181548
    [3] Deng Wan-Tao, Zhao Gang, Xia Hui-Jun, Zhang Mao, Yang Yi-Fan. Method of correcting tilt aberration for array laser of incoherent combination. Acta Physica Sinica, 2019, 68(23): 234205. doi: 10.7498/aps.68.20190961
    [4] Wang Ming-Jun, Wei Ya-Fei, Ke Xi-Zheng. Laser propagation transmission properties characteristics between airborne communication terminal and unmanned aerial vehicle target in complex atmospheric background. Acta Physica Sinica, 2019, 68(9): 094203. doi: 10.7498/aps.68.20182052
    [5] Bai Jin-Hai, Lu Xiao-Gang, Miao Xing-Xu, Pei Li-Ya, Wang Meng, Gao Yan-Lei, Wang Ru-Quan, Wu Ling-An, Fu Pan-Ming, Zuo Zhan-Chun. Analysis on the absorption curve asymmetry of electromagnetically induced transparency in Rb87 cold atoms. Acta Physica Sinica, 2015, 64(3): 034206. doi: 10.7498/aps.64.034206
    [6] Zou Chang-Lin, Ye Wen-Hua, Lu Xin-Pei. Study of laser plasma interactions using one-dimensional particle-in-cell code in kinetic regime. Acta Physica Sinica, 2014, 63(8): 085207. doi: 10.7498/aps.63.085207
    [7] Wang Sheng-Han, Li Zhan-Long, Sun Cheng-Lin, Li Zuo-Wei, Men Zhi-Wei. Influence of laser-induced plasma on stimulated Raman scatting of OH stretching vibrational from water molecules. Acta Physica Sinica, 2014, 63(20): 205204. doi: 10.7498/aps.63.205204
    [8] Liu Xiao-Liang, Sun Shao-Hua, Cao Yu, Sun Ming-Ze, Liu Qing-Cao, Hu Bi-Tao. Experimental study on the behaviors of femtosecond-laser-induced low-pressure N2 plasma. Acta Physica Sinica, 2013, 62(4): 045201. doi: 10.7498/aps.62.045201
    [9] Wang Hong-Xia, Zhu You-Zhang, Tian Tao, Li Ai-Jun. Characteristics of laser transmission in different types of aerosols. Acta Physica Sinica, 2013, 62(2): 024214. doi: 10.7498/aps.62.024214
    [10] Li Zhan-Long, Wang Yi-Ding, Zhou Mi, Men Zhi-Wei, Sun Cheng-Lin, Li Zuo-Wei. Stimulated Raman scattering in liquid water in a low-frequency region. Acta Physica Sinica, 2012, 61(6): 064217. doi: 10.7498/aps.61.064217
    [11] Zhang Lei, Dong Quan-Li, Zhao Jing, Wang Shou-Jun, Sheng Zheng-Ming, He Min-Qing, Zhang Jie. Saturation of stimulated Raman scattering in laser-plasma interaction. Acta Physica Sinica, 2009, 58(3): 1833-1837. doi: 10.7498/aps.58.1833
    [12] Hu Da-Wei, Wang Zheng-Ping, Zhang Huai-Jin, Xu Xin-Guang, Wang Ji-Yang, Shao Zong-Shu. Stimulated Raman scattering of YbVO4 crystal. Acta Physica Sinica, 2008, 57(3): 1714-1718. doi: 10.7498/aps.57.1714
    [13] Luan Shi-Xia, Zhang Qiu-Ju, Gui Wei-Ling. Plasma Bragg gratings generated by the interaction of two counter-propagating laser pulses with plasmas. Acta Physica Sinica, 2008, 57(11): 7030-7037. doi: 10.7498/aps.57.7030
    [14] Deng Li, Sun Zhen-Rong, Lin Wei-Zhu, Wen Jin-Hui. The stimulated Raman scattering and the four wave mixing in the generation of sub-10 fs pulses. Acta Physica Sinica, 2008, 57(12): 7668-7673. doi: 10.7498/aps.57.7668
    [15] Zang Jing-Cun, Xie Li-Yan, Li Xiao, Zhang Dong-Xiang, Feng Bao-Hua. Investigating of SRS and luminescence of ZnWO4 crystals. Acta Physica Sinica, 2007, 56(5): 2689-2692. doi: 10.7498/aps.56.2689
    [16] Study of laser plasma interactions using Vlasov and Maxwell equations. Acta Physica Sinica, 2007, 56(12): 7084-7089. doi: 10.7498/aps.56.7084
    [17] Stimulated Raman scattering mode competition in C6H12 under different pump wavelength. Acta Physica Sinica, 2007, 56(12): 6994-6998. doi: 10.7498/aps.56.6994
    [18] Pu Xiao-Yun, Yang Rui, Wang Ya-Li, Chen Tian-Jiang, Jiang Nan. Enhancement of stimulated Raman scattering of minority species of binary mixture in pendant drops by dye lasing gain. Acta Physica Sinica, 2004, 53(8): 2509-2514. doi: 10.7498/aps.53.2509
    [19] Pu Xiao-Yun, Yang Zheng, Jiang Nan, Chen Yong-Kang, Dai Hong. Observation of stimulated Raman scattering of weak-gain Raman modes by means of lasing gain. Acta Physica Sinica, 2003, 52(10): 2443-2448. doi: 10.7498/aps.52.2443
    [20] Zhang Xi-He, Wang Zhao-Min, Wan Chun-Ming. . Acta Physica Sinica, 2002, 51(6): 1251-1255. doi: 10.7498/aps.51.1251
Metrics
  • Abstract views:  7835
  • PDF Downloads:  66
  • Cited By: 0
Publishing process
  • Received Date:  08 July 2019
  • Accepted Date:  26 July 2019
  • Available Online:  01 October 2019
  • Published Online:  05 October 2019

/

返回文章
返回