Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Prediction of proton single event upset sensitivity based on heavy ion test data in nanometer hardened static random access memory

Luo Yin-Hong Zhang Feng-Qi Guo Hong-Xia Wojtek Hajdas

Citation:

Prediction of proton single event upset sensitivity based on heavy ion test data in nanometer hardened static random access memory

Luo Yin-Hong, Zhang Feng-Qi, Guo Hong-Xia, Wojtek Hajdas
PDF
HTML
Get Citation
  • In order to evaluate the radiation tolerance to proton single event effect(SEE) in nanometer dual interlocked cell (DICE) hardening device accurately, single event upset (SEU) linear energy transfer (LET) threshold at heavy ion normal and tilt incidence, and the worst case SEU orientational angle are acquired based on the analysis of heavy ion SEU testing data in 65 nm dual DICE static random access memory (SRAM). It is proved that dual DICE design is effective for improving the LET threshold against SEU. Howerer, heavy ion tilt incidence at the worst orientational angle will significantly reduce the SEU threshold and increase the SEU cross section. The worst orientational angle for SEU in DICE SRAM is the large tilting angle along the well. The maximum LET value and the emission angle distribution of secondary particle induced by the nuclear reaction between protons with different energy and layers with different multiple metallization are obtained by using Monte-Carlo simulation. The maximum LET value of secondary particle from proton-copper spallation reaction is higher than 15 MeV·cm2/mg for 100 MeV and 200 MeV protons. Secondary particles with the maximum energy and longest range are emitted preferentially in the forward direction. Proton SEU sensitivity is further predicted through combining heavy ion test data with Monte-Carlo simulation. Proton SEU test data verify the effectiveness of the prediction method and the accuracy of the prediction results. The research results indicate that the tolerance of nanometer DICE hardening technique against proton SEU will be overestimated if SEE evaluation test is carried out with only 100 MeV proton accelerator or normal incidence. Proton single event upset in nanometer dual DICE SRAM has an evident dependence on tilt angle and orientational angle. By adopting the above prediction method, whether proton SEE test needs performing or not in nanometer radiation-hardening device can be judged and screened. The requirements for the maximum energy of proton accelerator can be ascertained. In order to ensure that the devices are applied to space with high reliability, SEE test should be carried out including tilt incidence at the worst orientational angle in nanometer DICE hardening device in the process of heavy ion and proton SEE test evaluation.
      Corresponding author: Luo Yin-Hong, luoyinhong@nint.ac.cn
    • Funds: Project supported by the Major Program of the National Natural Science Foundation of China (Grant Nos. 11690043, 11690040)
    [1]

    Hoeffgen S K, Durante M, Ferlet-Cavrois V, Harboe-Sørensen R, Lennartz W, Kuendgen T, Kuhnhenn J, Latessa C, Mathes M, Menicucci A, Metzger S, Nieminen P, Pleskac R, Poivey C, Schardt D, Weinand U 2012 IEEE Trans. Nucl. Sci. 59 1161Google Scholar

    [2]

    Falguere D, Boscher D, Nuns T, Duzellier S, Bourdarie S, Ecoffet R, Barde S, Cueto J, Alonzo C, Hoffman C 2002 IEEE Trans. Nucl. Sci. 49 2782Google Scholar

    [3]

    Peterson E L 1992 IEEE Trans. Nucl. Sci. 39 1600Google Scholar

    [4]

    Calvel P, Barillot C, Lamothe P, Ecoffet R, Duzellier S, Falguere D 1996 IEEE Trans. Nucl. Sci. 43 2827Google Scholar

    [5]

    Edmonds L D 2000 IEEE Trans. Nucl. Sci. 47 1713Google Scholar

    [6]

    Barak J 2006 .IEEE Trans. Nucl. Sci. 53 3336Google Scholar

    [7]

    Koga R, George J, Swift G, Yui C, Edmonds L, Carmichael C, Langley T, Murray P, Lanes K, Napier M 2004 IEEE Trans. Nucl. Sci. 51 2825Google Scholar

    [8]

    Hansen D L 2015 IEEE Trans. Nucl. Sci. 62 2874Google Scholar

    [9]

    Sierawski B D, Pellish J A, Reed R A, Schrimpf R D, Warren K M, Weller R A, Mendenhall M H, Black J D, Tipton A D, Xapsos M A, Baumann R C, Deng X, Campola M J, Friendlich M R, Kim H S, Phan A M, Seidleck C M 2009 IEEE Trans. Nucl. Sci. 56 3085Google Scholar

    [10]

    Warren K M, Weller R A, Sierawski B D, Reed R A, Mendenhall M H, Schrimph R D, Massengill L W, Porter M E, Wilkinson J D, Label K A, Adams J H 2007 IEEE Trans. Nucl. Sci. 54 898Google Scholar

    [11]

    Xi K, Geng C, Zhang Z G, Hou M D, Sun Y M, Luo J, Liu T Q, Wang B, Ye B, Yin Y N, Liu J 2016 Chin. Phys. C 40 066001Google Scholar

    [12]

    Warren K M, Sierawski B D, Reed R A, Weller R A, Carmichael C, Lesea A, Mendenhal M H, Dodd P E, Schrimpf R D, Massengill L W, Hoang T, Wan H, De Jong J L, Padovani R, Fabula J J 2007 IEEE Trans. Nucl. Sci. 54 2419Google Scholar

    [13]

    Gorbunov M S, Boruzdina A B, Dolotov P S 2016 IEEE Trans. Nucl. Sci. 63 2250Google Scholar

    [14]

    Loveless T D, Jagannathan S, Reece T, Chetia J, Bhuva B L, McCurdy M W, Massengill L W, Wen S J, Wong R, Rennie D 2011 IEEE Trans. Nucl. Sci. 58 1008Google Scholar

    [15]

    Amusan O A, Massengill L W, Baze M. P., Bhuva B L, Witulski A F, DasGupta S, Sternberg A L, Fleming P R, Heath C C, Alles M L 2007 IEEE Trans. Nucl. Sci. 52 2584

    [16]

    Gorbunov M S, Dolotov P S, Antonov A A, Zebrev G.I, Emeliyanov V V, Boruzdina A B, Petrov A G, Ulanova A V 2014 IEEE Trans. Nucl. Sci. 61 1575Google Scholar

    [17]

    Liu L, Yue S G, Lu S J 2015 J. Semicond. 36 115007Google Scholar

    [18]

    Cabanas-Holmen M, Cannon E H, Rabaa S, Amort T, Ballast J, Carson M, Lam D, Brees R 2013 IEEE Trans. Nucl. Sci. 60 4374Google Scholar

    [19]

    European Space Agency 2014 ESCC Basic Specification NO. 25100

    [20]

    Turflinger T L, Clymer D A, Mason L W, Stone S, George J S, Koga R, Beach E, Huntington K, Turflinger T L 2017 IEEE Trans. Nucl. Sci. 64 309Google Scholar

    [21]

    Schwank J R, Shaneyfelt M R, Baggio J, Dodd P E, Felix J A, Ferlet-Cavrois V, Paillet P, Lambert D, Sexton F W, Hash G L, Blackmore E 2006 IEEE Trans. Nucl. Sci. 52 2622

    [22]

    罗尹虹, 张凤祁, 王燕萍, 王圆明, 郭晓强, 郭红霞 2016 物理学报 65 068501Google Scholar

    Luo Y H, Zhang F Q, Wang Y P, Wang Y M, Guo X Q, Guo H X 2016 Acta Phys. Sin. 65 068501Google Scholar

  • 图 1  DICE存储单元电路原理图

    Figure 1.  Diagram of the DICE memory cell.

    图 2  双DICE存储单元交叉布局版图示意图以及存储数据1时DICE单元4组灵敏节点对分布情况

    Figure 2.  Layout diagram of dual DICE cells and the distribution of four sensitive pairs with “1”.

    图 3  重离子沿不同方位角倾斜60°入射器件示意图

    Figure 3.  Schematic of heavy ion tilt 60° incidence along different orientational angle.

    图 4  65 nm SRAM重离子单粒子位翻转截面曲线

    Figure 4.  65 nm dual DICE SRAM heavy ion bit SEU cross section versus the effective LET.

    图 5  65 nm DICE SRAM有源区上方多层金属布线层

    Figure 5.  Multiple metal-interconnection layers above the active area in 65 nm SRAM.

    图 6  100 MeV和200 MeV质子穿过器件多层金属布线层后在硅中产生的次级粒子LET值分布 (a) 铝互联; (b) 铜互联

    Figure 6.  LET distribution of secondary particle in silicon with 100 MeV and 200 MeV protons passing through multiple metallization layers: (a) Al interconnection; (b) cu interconnection.

    图 7  65 nm双DICE SRAM质子单粒子翻转截面

    Figure 7.  Proton single event upset cross section in 65 nm dual DICE SRAM.

    图 8  100 MeV质子穿过多层金属布线层产生的Z = 27次级粒子能量角度分布

    Figure 8.  The distribution of energy and angle of secondary particle with Z = 13 induced by interaction with multiple metallization layers by 100 MeV protons.

    表 1  双DICE存储单元存储不同数据时的灵敏节点对

    Table 1.  Sensitive pairs with different data stored in dual DICE cell.

    存储数据灵敏节点对存储数据灵敏节点对
    BL = 1, (A, B, C, D) = (1, 0, 1, 0)N1/N3BL = 0, (A, B, C, D) = (0, 1, 0, 1)N2/N4
    P2/P4P1/P3
    N1/P2N2/P3
    N3/P4N4/P1
    DownLoad: CSV

    表 2  试验离子种类信息

    Table 2.  Ion species in Heavy ion testing.

    序号离子种类能量/MeV射程/μm垂直入射时有效LET/(MeV·cm2/mg)倾角30°、60°时对应的有效LET/(MeV·cm2/mg)
    119F9+11082.74.45.1/9.3
    235Cl11, 14+16046.014.016.5/30.7
    348Ti10, 15+16934.723.5
    474Ge11, 20+21030.537.4
    579Br13, 21+22030.440.545.8/63.3
    6127I15, 25+26528.852.757.7/68.0
    7209Bi31+92353.799.8
    DownLoad: CSV
  • [1]

    Hoeffgen S K, Durante M, Ferlet-Cavrois V, Harboe-Sørensen R, Lennartz W, Kuendgen T, Kuhnhenn J, Latessa C, Mathes M, Menicucci A, Metzger S, Nieminen P, Pleskac R, Poivey C, Schardt D, Weinand U 2012 IEEE Trans. Nucl. Sci. 59 1161Google Scholar

    [2]

    Falguere D, Boscher D, Nuns T, Duzellier S, Bourdarie S, Ecoffet R, Barde S, Cueto J, Alonzo C, Hoffman C 2002 IEEE Trans. Nucl. Sci. 49 2782Google Scholar

    [3]

    Peterson E L 1992 IEEE Trans. Nucl. Sci. 39 1600Google Scholar

    [4]

    Calvel P, Barillot C, Lamothe P, Ecoffet R, Duzellier S, Falguere D 1996 IEEE Trans. Nucl. Sci. 43 2827Google Scholar

    [5]

    Edmonds L D 2000 IEEE Trans. Nucl. Sci. 47 1713Google Scholar

    [6]

    Barak J 2006 .IEEE Trans. Nucl. Sci. 53 3336Google Scholar

    [7]

    Koga R, George J, Swift G, Yui C, Edmonds L, Carmichael C, Langley T, Murray P, Lanes K, Napier M 2004 IEEE Trans. Nucl. Sci. 51 2825Google Scholar

    [8]

    Hansen D L 2015 IEEE Trans. Nucl. Sci. 62 2874Google Scholar

    [9]

    Sierawski B D, Pellish J A, Reed R A, Schrimpf R D, Warren K M, Weller R A, Mendenhall M H, Black J D, Tipton A D, Xapsos M A, Baumann R C, Deng X, Campola M J, Friendlich M R, Kim H S, Phan A M, Seidleck C M 2009 IEEE Trans. Nucl. Sci. 56 3085Google Scholar

    [10]

    Warren K M, Weller R A, Sierawski B D, Reed R A, Mendenhall M H, Schrimph R D, Massengill L W, Porter M E, Wilkinson J D, Label K A, Adams J H 2007 IEEE Trans. Nucl. Sci. 54 898Google Scholar

    [11]

    Xi K, Geng C, Zhang Z G, Hou M D, Sun Y M, Luo J, Liu T Q, Wang B, Ye B, Yin Y N, Liu J 2016 Chin. Phys. C 40 066001Google Scholar

    [12]

    Warren K M, Sierawski B D, Reed R A, Weller R A, Carmichael C, Lesea A, Mendenhal M H, Dodd P E, Schrimpf R D, Massengill L W, Hoang T, Wan H, De Jong J L, Padovani R, Fabula J J 2007 IEEE Trans. Nucl. Sci. 54 2419Google Scholar

    [13]

    Gorbunov M S, Boruzdina A B, Dolotov P S 2016 IEEE Trans. Nucl. Sci. 63 2250Google Scholar

    [14]

    Loveless T D, Jagannathan S, Reece T, Chetia J, Bhuva B L, McCurdy M W, Massengill L W, Wen S J, Wong R, Rennie D 2011 IEEE Trans. Nucl. Sci. 58 1008Google Scholar

    [15]

    Amusan O A, Massengill L W, Baze M. P., Bhuva B L, Witulski A F, DasGupta S, Sternberg A L, Fleming P R, Heath C C, Alles M L 2007 IEEE Trans. Nucl. Sci. 52 2584

    [16]

    Gorbunov M S, Dolotov P S, Antonov A A, Zebrev G.I, Emeliyanov V V, Boruzdina A B, Petrov A G, Ulanova A V 2014 IEEE Trans. Nucl. Sci. 61 1575Google Scholar

    [17]

    Liu L, Yue S G, Lu S J 2015 J. Semicond. 36 115007Google Scholar

    [18]

    Cabanas-Holmen M, Cannon E H, Rabaa S, Amort T, Ballast J, Carson M, Lam D, Brees R 2013 IEEE Trans. Nucl. Sci. 60 4374Google Scholar

    [19]

    European Space Agency 2014 ESCC Basic Specification NO. 25100

    [20]

    Turflinger T L, Clymer D A, Mason L W, Stone S, George J S, Koga R, Beach E, Huntington K, Turflinger T L 2017 IEEE Trans. Nucl. Sci. 64 309Google Scholar

    [21]

    Schwank J R, Shaneyfelt M R, Baggio J, Dodd P E, Felix J A, Ferlet-Cavrois V, Paillet P, Lambert D, Sexton F W, Hash G L, Blackmore E 2006 IEEE Trans. Nucl. Sci. 52 2622

    [22]

    罗尹虹, 张凤祁, 王燕萍, 王圆明, 郭晓强, 郭红霞 2016 物理学报 65 068501Google Scholar

    Luo Y H, Zhang F Q, Wang Y P, Wang Y M, Guo X Q, Guo H X 2016 Acta Phys. Sin. 65 068501Google Scholar

  • [1] He Huan, Bai Yu-Rong, Tian Shang, Liu Fang, Zang Hang, Liu Wen-Bo, Li Pei, He Chao-Hui. Simulation of displacement damage induced by protons incident on AlxGa1–xN materials. Acta Physica Sinica, 2024, 73(5): 052402. doi: 10.7498/aps.73.20231671
    [2] Liu Ye, Guo Hong-Xia, Ju An-An, Zhang Feng-Qi, Pan Xiao-Yu, Zhang Hong, Gu Zhao-Qiao, Liu Yi-Tian, Feng Ya-Hui. Data inversion and erroneous annealing of floating gate cell under proton radiation. Acta Physica Sinica, 2022, 71(11): 118501. doi: 10.7498/aps.71.20212405
    [3] Mechanisms of Alpha Particle Induced Soft Errors in Nanoscale Static Random Access Memories. Acta Physica Sinica, 2020, (): 006100. doi: 10.7498/aps.69.20191796
    [4] Zhang Zhan-Gang, Ye Bing, Ji Qing-Gang, Guo Jin-Long, Xi Kai, Lei Zhi-Feng, Huang Yun, Peng Chao, He Yu-Juan, Liu Jie, Du Guang-Hua. Mechanisms of alpha particle induced soft errors in nanoscale static random access memories. Acta Physica Sinica, 2020, 69(13): 136103. doi: 10.7498/aps.69.20201796
    [5] Wang Xun, Zhang Feng-Qi, Chen Wei, Guo Xiao-Qiang, Ding Li-Li, Luo Yin-Hong. Experimental study on neutron single event effects of commercial SRAMs based on CSNS. Acta Physica Sinica, 2020, 69(16): 162901. doi: 10.7498/aps.69.20200265
    [6] Zhang Zhan-Gang, Lei Zhi-Feng, Tong Teng, Li Xiao-Hui, Wang Song-Lin, Liang Tian-Jiao, Xi Kai, Peng Chao, He Yu-Juan, Huang Yun, En Yun-Fei. Comparison of neutron induced single event upsets in 14 nm FinFET and 65 nm planar static random access memory devices. Acta Physica Sinica, 2020, 69(5): 056101. doi: 10.7498/aps.69.20191209
    [7] Zhu Bing-Hui, Yang Ai-Xiang, Niu Shu-Tong, Chen Xi-Meng, Zhou Wang Shao, Jian-Xiong. Simulation analyses of 100-keV as well as low and high energy protons through insulating nanocapillary. Acta Physica Sinica, 2018, 67(1): 013401. doi: 10.7498/aps.67.20171701
    [8] Zhang Zhan-Gang, Lei Zhi-Feng, Yue Long, Liu Yuan, He Yu-Juan, Peng Chao, Shi Qian, Huang Yun, En Yun-Fei. Single event upset characteristics and physical mechanism for nanometric SOI SRAM induced by space energetic ions. Acta Physica Sinica, 2017, 66(24): 246102. doi: 10.7498/aps.66.246102
    [9] Luo Yin-Hong, Guo Xiao-Qiang, Chen Wei, Guo Gang, Fan Hui. Energy and angular dependence of single event upsets in ESA SEU Monitor. Acta Physica Sinica, 2016, 65(20): 206103. doi: 10.7498/aps.65.206103
    [10] Luo Yin-Hong, Zhang Feng-Qi, Wang Yan-Ping, Wang Yuan-Ming, Guo Xiao-Qiang, Guo Hong-Xia. Single event upsets sensitivity of low energy proton in nanometer static random access memory. Acta Physica Sinica, 2016, 65(6): 068501. doi: 10.7498/aps.65.068501
    [11] Zhao Wen, Guo Xiao-Qiang, Chen Wei, Qiu Meng-Tong, Luo Yin-Hong, Wang Zhong-Ming, Guo Hong-Xia. Effects of nuclear reactions between protons and metal interconnect overlayers on single event effects of micro/nano scaled static random access memory. Acta Physica Sinica, 2015, 64(17): 178501. doi: 10.7498/aps.64.178501
    [12] Luo Yin-Hong, Zhang Feng-Qi, Guo Hong-Xia, Guo Xiao-Qiang, Zhao Wen, Ding Li-Li, Wang Yuan-Ming. Angular dependence of proton single event multiple-cell upsets in nanometer SRAM. Acta Physica Sinica, 2015, 64(21): 216103. doi: 10.7498/aps.64.216103
    [13] Zhu Jin-Hui, Wei Yuan, Xie Hong-Gang, Niu Sheng-Li, Huang Liu-Xing. Numerical investigation of non-ionizing energy loss of proton at an energy range of 300 eV to 1 GeV in silicon. Acta Physica Sinica, 2014, 63(6): 066102. doi: 10.7498/aps.63.066102
    [14] Wang Xiao-Han, Guo Hong-Xia, Lei Zhi-Feng, Guo Gang, Zhang Ke-Ying, Gao Li-Juan, Zhang Zhan-Gang. Calculation of single event upset based on Monte Carlo and device simulations. Acta Physica Sinica, 2014, 63(19): 196102. doi: 10.7498/aps.63.196102
    [15] Zhang Ming-Lan, Yang Rui-Xia, Li Zhuo-Xin, Cao Xing-Zhong, Wang Bao-Yi, Wang Xiao-Hui. Study on proton irradiation induced defects in GaN thick film. Acta Physica Sinica, 2013, 62(11): 117103. doi: 10.7498/aps.62.117103
    [16] Ding Li-Li, Guo Hong-Xia, Chen Wei, Yan Yi-Hua, Xiao Yao, Fan Ru-Yu. Simulation study of the influence of ionizing irradiation on the single event upset vulnerability of static random access memory. Acta Physica Sinica, 2013, 62(18): 188502. doi: 10.7498/aps.62.188502
    [17] Wang Zu-Jun, Tang Ben-Qi, Xiao Zhi-Gang, Liu Min-Bo, Huang Shao-Yan, Zhang Yong. Experimental analysis of charge transfer efficiency degradation of charge coupled devices induced by proton irradiation. Acta Physica Sinica, 2010, 59(6): 4136-4142. doi: 10.7498/aps.59.4136
    [18] Zhang Ke-Ying, Guo Hong-Xia, Luo Yin-Hong, He Bao-Ping, Yao Zhi-Bin, Zhang Feng-Qi, Wang Yuan-Ming. Three-dimensional numerial simulation of single event upset effects in static random access memory. Acta Physica Sinica, 2009, 58(12): 8651-8656. doi: 10.7498/aps.58.8651
    [19] He Bao-Ping, Chen Wei, Wang Gui-Zhen. A comparison of ionizing radiation damage in CMOS devices from 60Co Gamma rays, electrons and protons. Acta Physica Sinica, 2006, 55(7): 3546-3551. doi: 10.7498/aps.55.3546
    [20] Zhang Qing-Xiang, Hou Ming-Dong, Liu Jie, Wang Zhi-Guang, Jin Yun-Fan, Zhu Zhi-Yong, Sun You-Mei. The dependence of single event upset cross-section on incident angle. Acta Physica Sinica, 2004, 53(2): 566-570. doi: 10.7498/aps.53.566
Metrics
  • Abstract views:  6578
  • PDF Downloads:  74
  • Cited By: 0
Publishing process
  • Received Date:  06 June 2019
  • Accepted Date:  06 October 2019
  • Available Online:  05 December 2019
  • Published Online:  05 January 2020

/

返回文章
返回