搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复宗量Laguerre-Gauss光束在强非局域非线性介质中的传输

陈利霞 陆大全 胡巍 杨振军 曹伟文 郑睿 郭旗

复宗量Laguerre-Gauss光束在强非局域非线性介质中的传输

陈利霞, 陆大全, 胡巍, 杨振军, 曹伟文, 郑睿, 郭旗
PDF
导出引用
导出核心图
  • 研究得到了偏离束腰入射的复宗量Laguerre-Gauss光束在强非局域非线性介质中传输的解析表达式,并且得到了其二阶矩束宽的解析解.通过例子研究了偏离束腰入射的复宗量Laguerre-Gauss光束在强非局域非线性介质中传输性质.结果表明:非(0, m)模的复宗量Laguerre-Gauss光束的光束形状随着传输而发生改变,并以Δz=πzc为周期做周期性演化.而(0,m)模复宗量Laguerre-Gauss光束在演化过程中则形状保持不变,仅改变光束宽度;不论功率多大,在偏离束腰入射条件下总是表现为呼吸子;只有当其为束腰入射,并且入射功率等于临界功率时才能形成孤子.
    • 基金项目: 国家自然科学基金(批准号: 10804033,10674050)、教育部高等学校博士学科点专项科研基金(批准号:20080574002)和广东省高校创新团队项目(批准号:06CXTD005)资助的课题.
    [1]

    [1]Krolikowski W, Bang O, Rasmussen J J, Wylle J 2001 Phys. Rev. E 64 016612

    [2]

    [2]Snyder A W, Mitchell D J 1997 Science 276 1538

    [3]

    [3]Yaroslav V. Kartashov, Lluis Torner 2006 Opt. Lett. 31 1483

    [4]

    [4]Deng D M, Guo Q 2008 J. Opt. A 10 035101

    [5]

    [5]Wang Y Q, Guo Q 2008 Chin. Phys. B 17 7

    [6]

    [6]Peccianti M, Rossi A D, Assanto G 2002 Appl. Phys. Lett. 77 7

    [7]

    [7]Conti C, Peccianti M, Assanto G 2004 Phys. Rev. Lett. 92 113902

    [8]

    [8]Hu W, Ouyang S G, Yang P B, Guo Q, Lan S 2008 Phys. Rev. A 03 3842

    [9]

    [9]Rotschild C, Alfassi B, Cohen O, Segev M 2006 Nat. Phys. 2 769

    [10]

    ]Guo Q, Xu C B 2004 Acta Phys. Sin. 53 3025 (in Chinese)[郭旗、许超彬 2004 物理学报 53 3025]

    [11]

    ]Xie Y Q, Guo Q 2004 Opt. Quantum Electron. 36 1335

    [12]

    ]Xu C B, Guo Q 2005 Acta Phys. Sin. 54 5194 (in Chinese) [许超彬、郭旗 2005 物理学报 54 5194]

    [13]

    ]Deng D M, Zhao X, Guo Q 2007 J. Opt. Soc. Am. B 24 2537

    [14]

    ]Wang X H, Guo Q 2005 Acta Phys. Sin. 54 3183 (in Chinese)[王形华、郭旗 2005 物理学报 54 3183]

    [15]

    ]Zhang X P, Guo Q 2005 Acta Phys. Sin. 54 3178 (in Chinese)[张霞萍、郭旗 2005 物理学报 54 3178]

    [16]

    ]Huang Y, Guo Q 2005 High Power Laser Part. Beams 17 655 (in Chinese) [黄毅、郭旗 2005 强激光与粒子束 17 655]

    [17]

    ]Dai J H, Guo Q 2008 Acta Phys. Sin. 57 5001 (in Chinese) [戴继慧、郭旗 2008 物理学报 57 5001]

    [18]

    ]Bai D F, Guo Q, Hu W 2008 Acta Phys. Sin. 57 5684 (in Chinese)[白东峰、郭旗、胡巍 2008 物理学报 57 5684]

    [19]

    ]Dai J H, Guo Q 2009 Acta Phys. Sin. 58 1752 (in Chinese) [戴继慧、郭旗 2009 物理学报 58 1752]

    [20]

    ]Takenaka T, Yokota M, Fukumistsu O 1985 J. Opt. Soc. Am. A 2 826

    [21]

    ]Duan K L, Lü B D 2007 Opt. Laser Technol. 39 110

    [22]

    ]Lu D Q, Hu W, Guo Q 2009 Eu. Phys. Lett. 86 44004

    [23]

    ]Lu D Q, Hu W, Zheng Y J, Liang Y B, Cao L G, Lan S, Guo Q 2008 Phys. Rev. A 78 043815

    [24]

    ]Lü B D 2003 Laser Optics (Beijing: Higher Education Press) pp10—13,109—111 (in Chinese)[吕百达 2003 激光光学(北京:高等教育出版社)第 10—13,109—111页]

    [25]

    ]Zhang K Q, Li D J 2001 Electromagnetic Theory for Microwaves and Optoelectronics (Beijing: Publishing House of Electronics Industry) p595—596 (in Chinese)[张克潜、李德杰 2001 微波与光电子学中的电磁理论(北京:电子工业出版社) 第595—596页]

    [26]

    ]Belanger P A 1991 Opt. Lett. 16 196

  • [1]

    [1]Krolikowski W, Bang O, Rasmussen J J, Wylle J 2001 Phys. Rev. E 64 016612

    [2]

    [2]Snyder A W, Mitchell D J 1997 Science 276 1538

    [3]

    [3]Yaroslav V. Kartashov, Lluis Torner 2006 Opt. Lett. 31 1483

    [4]

    [4]Deng D M, Guo Q 2008 J. Opt. A 10 035101

    [5]

    [5]Wang Y Q, Guo Q 2008 Chin. Phys. B 17 7

    [6]

    [6]Peccianti M, Rossi A D, Assanto G 2002 Appl. Phys. Lett. 77 7

    [7]

    [7]Conti C, Peccianti M, Assanto G 2004 Phys. Rev. Lett. 92 113902

    [8]

    [8]Hu W, Ouyang S G, Yang P B, Guo Q, Lan S 2008 Phys. Rev. A 03 3842

    [9]

    [9]Rotschild C, Alfassi B, Cohen O, Segev M 2006 Nat. Phys. 2 769

    [10]

    ]Guo Q, Xu C B 2004 Acta Phys. Sin. 53 3025 (in Chinese)[郭旗、许超彬 2004 物理学报 53 3025]

    [11]

    ]Xie Y Q, Guo Q 2004 Opt. Quantum Electron. 36 1335

    [12]

    ]Xu C B, Guo Q 2005 Acta Phys. Sin. 54 5194 (in Chinese) [许超彬、郭旗 2005 物理学报 54 5194]

    [13]

    ]Deng D M, Zhao X, Guo Q 2007 J. Opt. Soc. Am. B 24 2537

    [14]

    ]Wang X H, Guo Q 2005 Acta Phys. Sin. 54 3183 (in Chinese)[王形华、郭旗 2005 物理学报 54 3183]

    [15]

    ]Zhang X P, Guo Q 2005 Acta Phys. Sin. 54 3178 (in Chinese)[张霞萍、郭旗 2005 物理学报 54 3178]

    [16]

    ]Huang Y, Guo Q 2005 High Power Laser Part. Beams 17 655 (in Chinese) [黄毅、郭旗 2005 强激光与粒子束 17 655]

    [17]

    ]Dai J H, Guo Q 2008 Acta Phys. Sin. 57 5001 (in Chinese) [戴继慧、郭旗 2008 物理学报 57 5001]

    [18]

    ]Bai D F, Guo Q, Hu W 2008 Acta Phys. Sin. 57 5684 (in Chinese)[白东峰、郭旗、胡巍 2008 物理学报 57 5684]

    [19]

    ]Dai J H, Guo Q 2009 Acta Phys. Sin. 58 1752 (in Chinese) [戴继慧、郭旗 2009 物理学报 58 1752]

    [20]

    ]Takenaka T, Yokota M, Fukumistsu O 1985 J. Opt. Soc. Am. A 2 826

    [21]

    ]Duan K L, Lü B D 2007 Opt. Laser Technol. 39 110

    [22]

    ]Lu D Q, Hu W, Guo Q 2009 Eu. Phys. Lett. 86 44004

    [23]

    ]Lu D Q, Hu W, Zheng Y J, Liang Y B, Cao L G, Lan S, Guo Q 2008 Phys. Rev. A 78 043815

    [24]

    ]Lü B D 2003 Laser Optics (Beijing: Higher Education Press) pp10—13,109—111 (in Chinese)[吕百达 2003 激光光学(北京:高等教育出版社)第 10—13,109—111页]

    [25]

    ]Zhang K Q, Li D J 2001 Electromagnetic Theory for Microwaves and Optoelectronics (Beijing: Publishing House of Electronics Industry) p595—596 (in Chinese)[张克潜、李德杰 2001 微波与光电子学中的电磁理论(北京:电子工业出版社) 第595—596页]

    [26]

    ]Belanger P A 1991 Opt. Lett. 16 196

  • [1] 王瑜浩, 武保剑, 郭飚, 文峰, 邱昆. 基于非线性光纤环形镜的少模脉冲幅度调制再生器研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191858
    [2] 蒋涛, 任金莲, 蒋戎戎, 陆伟刚. 基于局部加密纯无网格法非线性Cahn-Hilliard方程的模拟. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191829
    [3] 胡渝曜, 梁东, 王晶, 刘军. 基于电动可调焦透镜的大范围快速光片显微成像. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191908
    [4] 郭慧, 王雅君, 王林雪, 张晓斐. 玻色-爱因斯坦凝聚中的环状暗孤子动力学. 物理学报, 2020, 69(1): 010302. doi: 10.7498/aps.69.20191424
    [5] 周峰, 蔡宇, 邹德峰, 胡丁桐, 张亚静, 宋有建, 胡明列. 钛宝石飞秒激光器中孤子分子的内部动态探测. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191989
    [6] 钟哲强, 张彬, 母杰, 王逍. 基于紧聚焦方式的阵列光束相干合成特性分析. 物理学报, 2020, (): . doi: 10.7498/aps.69.20200034
    [7] 翁明, 谢少毅, 殷明, 曹猛. 介质材料二次电子发射特性对微波击穿的影响. 物理学报, 2020, (): . doi: 10.7498/aps.69.20200026
    [8] 黄永峰, 曹怀信, 王文华. 共轭线性对称性及其对\begin{document}$ {\mathcal{P}}{\mathcal{T}} $\end{document}-对称量子理论的应用. 物理学报, 2020, 69(3): 030301. doi: 10.7498/aps.69.20191173
    [9] 张雅男, 詹楠, 邓玲玲, 陈淑芬. 利用银纳米立方增强效率的多层溶液加工白光有机发光二极管. 物理学报, 2020, 69(4): 047801. doi: 10.7498/aps.69.20191526
  • 引用本文:
    Citation:
计量
  • 文章访问数:  3672
  • PDF下载量:  906
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-06-04
  • 修回日期:  2009-07-13
  • 刊出日期:  2010-04-15

复宗量Laguerre-Gauss光束在强非局域非线性介质中的传输

  • 1. 华南师范大学光子信息技术广东省高校重点实验室,广州 510006
    基金项目: 

    国家自然科学基金(批准号: 10804033,10674050)、教育部高等学校博士学科点专项科研基金(批准号:20080574002)和广东省高校创新团队项目(批准号:06CXTD005)资助的课题.

摘要: 研究得到了偏离束腰入射的复宗量Laguerre-Gauss光束在强非局域非线性介质中传输的解析表达式,并且得到了其二阶矩束宽的解析解.通过例子研究了偏离束腰入射的复宗量Laguerre-Gauss光束在强非局域非线性介质中传输性质.结果表明:非(0, m)模的复宗量Laguerre-Gauss光束的光束形状随着传输而发生改变,并以Δz=πzc为周期做周期性演化.而(0,m)模复宗量Laguerre-Gauss光束在演化过程中则形状保持不变,仅改变光束宽度;不论功率多大,在偏离束腰入射条件下总是表现为呼吸子;只有当其为束腰入射,并且入射功率等于临界功率时才能形成孤子.

English Abstract

参考文献 (26)

目录

    /

    返回文章
    返回