搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钻井液径向温度梯度与轴向导热对井筒温度分布影响

杨谋 孟英峰 李皋 邓建民 张林 唐思洪

钻井液径向温度梯度与轴向导热对井筒温度分布影响

杨谋, 孟英峰, 李皋, 邓建民, 张林, 唐思洪
PDF
导出引用
导出核心图
  • 本文基于井筒与地层间能量平衡原理, 将井筒钻井液划分成不同径向单元网格, 建立了考虑径向温度梯度条件下钻井液层间温度模型; 同时引入钻井液轴向导热项, 建立了钻井液轴向导热温度模型, 将数学模型应用隐式有限差分法离散与求解. 计算结果表明: 钻井液径向温度梯度对井筒径向与轴向温度产生的误差分别为0.15 ℃和0.2 ℃左右; 而钻井液轴向导热对井筒温度分布几乎不产生影响. 因此, 通过建立的数学模型进行系统分析表明, 在建立井筒-地层耦合瞬态传热模型时可忽略两者对井筒温度分布的影响. 基于数学建模方法验证了以前学者模型假设条件的正确性, 为油气井与地热井井下温度分布规律深入研究奠定了可靠的理论基础.
    • 基金项目: 国家自然科学基金 (批准号: 51134004; 51104124)、国家重点基础研究发展计划 (973) 项目(批准号: 2010CB226704)和"西南石油大学青年科研创新团队"基金 (批准号: 2012XJZT003) 资助的课题.
    [1]

    Yang M 2012 Ph. D. Dissertation. (Chengdu: Southwest petroleum University) (in Chinese) [杨谋 2012 博士学位论文 (成都: 西南石油大学)]

    [2]

    Kritikos W R, Kutasov I M 1988 SPE Formation Evaluation Journal March 224

    [3]

    Hasan A R, Kabir C S 1994 SPE Drilling and Completion March 20

    [4]

    Kutasov I M, Eppelbaum L V 2005 Journal of Geophysics and Engineering 2 91

    [5]

    Eppelbaum L V, Kutasov I M 2011 Journal of Applied Geophysics 73 281

    [6]

    Guo Y C, Zeng Y S, Lu D T 2005 Acta Phys. Sin. 54 802 (in Chinese) [郭永存, 曾亿山, 卢德唐 2005 物理学报 54 802]

    [7]

    Valladares O G, Sánchez P U, Santoyo E 2006 Energy Conversion and Management 47 1622

    [8]

    Paredes G E, Erick G, Espinosa M 2009 Energy Conversion and Management 50 143

    [9]

    Raymond L R 1969 Journal of Petroleum Technology March 336

    [10]

    Song X C, Guan Z C 2011 Acta Petrolei Sinica 32 704 (in Chinese) [宋洵成, 管志川 2011 石油学报 32 705 ]

    [11]

    Marshall D W, Bentsen R G 1982 The Journal of Canadian Petroleum January-February 68

    [12]

    Beirute R M 1991 Journal of Petroleum Technology September 1142

    [13]

    García A, Santoyo E, Espinosa G, Hernandez I 1998 Transport in Porous Media 33 108

    [14]

    Paredes G E, Garcia A 2001 Computers & Geosciences 27 337

    [15]

    Zhong M C, Rudolf J N 2003 SPE Annual Technical Conference October 4

    [16]

    Zhong B, 1998 Ph. D. Dissertation (Sichuan Union University) (in Chinese) [钟兵 1998 博士学位论文 (成都: 四川联合大学博士论文)

    [17]

    Paredes G E, Gutierrez A G 2004 Energy Conversion and Management 45 1523

    [18]

    Paredes G E, Díaz A M, González U O, Garcia J J 2009 Marine and Petroleum Geology 26 262

    [19]

    Shen H C 2005 Acta Phys. Sin. 54 2486 (in Chinese) [沈惠州 2005 物理学报 54 2486]

    [20]

    Xu Z Z, Zhang W Q, Pan Z S, Wang Y F 1982 Acta Phys. Sin. 31 1270 (in Chinese) [徐至展, 张文琦, 潘仲雄, 王翼飞 1982 物理学报 31 1268]

    [21]

    Cheng H, Zhang W P, Zhao Z Y, Li Z B, Zhou W Y, Tian J G 2009 Chin. Phys. Lett. 27 014201

    [22]

    Ji Y, Yun B F, Hu G H, Cui Y P 2009 Chin. Phys. Lett. 27 014201

    [23]

    Kelessidis V C, Maglione R, Tsamantaki C 2006 Journal of Petroleum Science and Engineering 53 214

  • [1]

    Yang M 2012 Ph. D. Dissertation. (Chengdu: Southwest petroleum University) (in Chinese) [杨谋 2012 博士学位论文 (成都: 西南石油大学)]

    [2]

    Kritikos W R, Kutasov I M 1988 SPE Formation Evaluation Journal March 224

    [3]

    Hasan A R, Kabir C S 1994 SPE Drilling and Completion March 20

    [4]

    Kutasov I M, Eppelbaum L V 2005 Journal of Geophysics and Engineering 2 91

    [5]

    Eppelbaum L V, Kutasov I M 2011 Journal of Applied Geophysics 73 281

    [6]

    Guo Y C, Zeng Y S, Lu D T 2005 Acta Phys. Sin. 54 802 (in Chinese) [郭永存, 曾亿山, 卢德唐 2005 物理学报 54 802]

    [7]

    Valladares O G, Sánchez P U, Santoyo E 2006 Energy Conversion and Management 47 1622

    [8]

    Paredes G E, Erick G, Espinosa M 2009 Energy Conversion and Management 50 143

    [9]

    Raymond L R 1969 Journal of Petroleum Technology March 336

    [10]

    Song X C, Guan Z C 2011 Acta Petrolei Sinica 32 704 (in Chinese) [宋洵成, 管志川 2011 石油学报 32 705 ]

    [11]

    Marshall D W, Bentsen R G 1982 The Journal of Canadian Petroleum January-February 68

    [12]

    Beirute R M 1991 Journal of Petroleum Technology September 1142

    [13]

    García A, Santoyo E, Espinosa G, Hernandez I 1998 Transport in Porous Media 33 108

    [14]

    Paredes G E, Garcia A 2001 Computers & Geosciences 27 337

    [15]

    Zhong M C, Rudolf J N 2003 SPE Annual Technical Conference October 4

    [16]

    Zhong B, 1998 Ph. D. Dissertation (Sichuan Union University) (in Chinese) [钟兵 1998 博士学位论文 (成都: 四川联合大学博士论文)

    [17]

    Paredes G E, Gutierrez A G 2004 Energy Conversion and Management 45 1523

    [18]

    Paredes G E, Díaz A M, González U O, Garcia J J 2009 Marine and Petroleum Geology 26 262

    [19]

    Shen H C 2005 Acta Phys. Sin. 54 2486 (in Chinese) [沈惠州 2005 物理学报 54 2486]

    [20]

    Xu Z Z, Zhang W Q, Pan Z S, Wang Y F 1982 Acta Phys. Sin. 31 1270 (in Chinese) [徐至展, 张文琦, 潘仲雄, 王翼飞 1982 物理学报 31 1268]

    [21]

    Cheng H, Zhang W P, Zhao Z Y, Li Z B, Zhou W Y, Tian J G 2009 Chin. Phys. Lett. 27 014201

    [22]

    Ji Y, Yun B F, Hu G H, Cui Y P 2009 Chin. Phys. Lett. 27 014201

    [23]

    Kelessidis V C, Maglione R, Tsamantaki C 2006 Journal of Petroleum Science and Engineering 53 214

  • [1] 杨谋, 孟英峰, 李皋, 邓建民, 李永杰, 周玉良. 基于比例积分控制原理预测钻井全过程原始地层温度的新方法研究. 物理学报, 2013, 62(17): 179101. doi: 10.7498/aps.62.179101
    [2] 陆赫林, 王顺金. 离子温度梯度模湍流的带状流最小自由度模型. 物理学报, 2009, 58(1): 354-362. doi: 10.7498/aps.58.354
    [3] 涂相征. 稳定自然对流下的温度梯度液相外延. 物理学报, 1982, 31(1): 78-89. doi: 10.7498/aps.31.78
    [4] 刘宸, 孙宏祥, 袁寿其, 夏建平. 基于温度梯度分布的宽频带声聚焦效应. 物理学报, 2016, 65(4): 044303. doi: 10.7498/aps.65.044303
    [5] 徐 军, 李红军, 王静雅, 赵广军, 赵志伟, 姜本学. 温度梯度法生长Nd:YAG激光晶体的核心分布. 物理学报, 2007, 56(2): 1014-1019. doi: 10.7498/aps.56.1014
    [6] 陈曦, 王霞, 吴锴, 彭宗仁, 成永红. 温度梯度场对电声脉冲法空间电荷测量波形的影响. 物理学报, 2010, 59(10): 7327-7332. doi: 10.7498/aps.59.7327
    [7] 魏承炀, 李赛毅. 温度梯度对晶粒生长行为影响的相场模拟. 物理学报, 2011, 60(10): 100701. doi: 10.7498/aps.60.100701
    [8] 孟广为, 李敬宏, 裴文兵, 李双贵, 张维岩. 温度梯度对平面金壁发射能流平衡性的影响. 物理学报, 2011, 60(2): 025210. doi: 10.7498/aps.60.025210
    [9] 陆赫林, 李跃勋, 杨恺, 陈忠勇. 磁场剪切对离子温度梯度模带状流产生的影响. 物理学报, 2011, 60(8): 085202. doi: 10.7498/aps.60.085202
    [10] 陈骝, 郭世宠, 沈解伍, 蔡诗东. 离子温度梯度不稳定性的解析理论. 物理学报, 1982, 31(1): 17-29. doi: 10.7498/aps.31.17
  • 引用本文:
    Citation:
计量
  • 文章访问数:  914
  • PDF下载量:  804
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-10-09
  • 修回日期:  2012-11-27
  • 刊出日期:  2013-04-05

钻井液径向温度梯度与轴向导热对井筒温度分布影响

  • 1. 西南石油大学, 油气藏地质及开发工程国家重点实验室, 成都 610500;
  • 2. 西南油气田公司采气工程研究院, 广汉 618300
    基金项目: 

    国家自然科学基金 (批准号: 51134004

    51104124)、国家重点基础研究发展计划 (973) 项目(批准号: 2010CB226704)和"西南石油大学青年科研创新团队"基金 (批准号: 2012XJZT003) 资助的课题.

摘要: 本文基于井筒与地层间能量平衡原理, 将井筒钻井液划分成不同径向单元网格, 建立了考虑径向温度梯度条件下钻井液层间温度模型; 同时引入钻井液轴向导热项, 建立了钻井液轴向导热温度模型, 将数学模型应用隐式有限差分法离散与求解. 计算结果表明: 钻井液径向温度梯度对井筒径向与轴向温度产生的误差分别为0.15 ℃和0.2 ℃左右; 而钻井液轴向导热对井筒温度分布几乎不产生影响. 因此, 通过建立的数学模型进行系统分析表明, 在建立井筒-地层耦合瞬态传热模型时可忽略两者对井筒温度分布的影响. 基于数学建模方法验证了以前学者模型假设条件的正确性, 为油气井与地热井井下温度分布规律深入研究奠定了可靠的理论基础.

English Abstract

参考文献 (23)

目录

    /

    返回文章
    返回