搜索

x
中国物理学会期刊

基于反射太阳光反演气溶胶光学厚度和有效半径

CSTR: 32037.14.aps.57.5565

Retrieval of the optical thickness and effective radius of aerosols from reflected solar radiation measurements

CSTR: 32037.14.aps.57.5565
PDF
导出引用
  • 根据太阳光的极化特性,提出了一种利用单波长太阳光遥感反演球形水凝物气溶胶光学厚度和有效半径的方法.根据矢量辐射传输理论,利用累加法,计算了λ=0.75μm(可见光)和3.3μm(近红外)两种波长太阳光入射时气溶胶的反射矩阵.气溶胶的有效半径为0.01—1.5μm,光学厚度为0.05—1.利用计算机模拟了反演过程,结果表明,当粒子的有效半径小于0.4μm时可以利用可见光波段进行反演;当粒子有效半径大于1.0μm时可以利用近红外波段反演;在0.4—1.0μm之间,利用这两个波段均可以得到精确性很

     

    A method for determining the optical thickness and effective particle radius of spherical aerosols with sun light of a single wavelength is presented. Based on the vector radiative transfer theory, the reflection matrix of the aerosols is calculated by using the adding-doubling method for λ=0.75μm and 3.3μm, the effective radii of aerosol particles were 0.01—1.5μm, and the optical thickness were 0.05—1. We modeled the retrieval process by computer simulation. From the numerical results, we conclude that the radiance combined with polarization is capable of uniquely retrieving optical thickness and effective radius with high accuracy. Especially, when the effective radius is less than 0.4μm, a visible light wavelength can be used for retrieval; when the effective radius is larger than 1.0μm, an infrared light wavelength can be used for retrieval; when the effective radius lies between 0.4 and 1.0μm, both of the two wave bands can be used to obtain a unique result with high accuracy.

     

    目录

    /

    返回文章
    返回