搜索

x
中国物理学会期刊

半解析对偶棱边元及其在波导不连续性问题中的应用

CSTR: 32037.14.aps.58.1091

Semi-analytical dual edge element method and its application to waveguide discontinuities

CSTR: 32037.14.aps.58.1091
PDF
导出引用
  • 给出电磁波导的对偶变量变分原理,并采用对偶棱边元对波导的横截面进行半解析离散. 将波导中沿纵向均匀的区段视为子结构,运用基于Riccati方程的精细积分算法求出其出口刚度阵,然后与不均匀区段的常规有限元网格拼装即可对波导不连续性问题进行求解. 半解析对偶棱边元的采用可以在最大程度上对有限元网格进行缩减,并且能够在不增加计算量的前提下任意增加子结构的长度,从而可以将截断求解区域的人工边界设置在距离不均匀区段充分远的地方,极大地减少了近似边界条件所带来的误差. 数值算例证明这种方法具有很高的精度与效率.

     

    A semi-analytical dual edge element is proposed to solve the waveguide discontinuities. The governing equations for electromagnetic waveguide are converted to the Hamiltonian system, and the corresponding variational principle based on the dual variables is given. For waveguide sections which are homogeneous along the longitudinal direction, the dual edge element is employed to discretize the cross section, and a precise integration method based on the Riccati equations is used for the longitudinal integration to generate the export stiffness matrices. The whole waveguide discontinuity problems can be solved by combining the export stiffness matrices of homogeneous waveguide sections with the system matrices by conventional three-dimentional finite element method for inhomogneous waveguide sections. Numerical examples demonstrate the high accuracy and efficiency of this method for solving waveguide discontinuity problems.

     

    目录

    /

    返回文章
    返回