搜索

x
中国物理学会期刊

[(SrTiO3)n/(SrTi0.8Nb0.2O3)m]20/LaAlO3超晶格的制备及其激光感生热电电压效应

CSTR: 32037.14.aps.58.3497

Preparation and laser induced thermoelectric voltage effect of [(SrTiO3)n/(SrTi0.8Nb0.2O3)m]20/LaAlO3 superlattices

CSTR: 32037.14.aps.58.3497
PDF
导出引用
  • 采用脉冲激光沉积(PLD)镀膜技术在倾斜10°的LaAlO3(100)单晶衬底上制备了(SrTiO3)n/(SrTi0.8Nb0.2O3)m系列超晶格.在超晶格薄膜的XRD图谱中清楚地观察到周期调制的卫星峰结构.从卫星峰的分布计算了超周期,进而得到了在生长SrTiO3和SrTi0.8Nb0.2<

     

    The (SrTiO3)n/(SrTi0.8Nb0.2O3)m superlattices on vicinal-cut LaAlO3 (100) single crystal substrate with tilting angle 10° have been prepared using pulsed laser deposition. The superlattices were characterized by X-ray diffraction, in which regularly distributed satellite peak structure was observed. According to the position of satellite peaks, the superperiod of superlattices was calculated and the deposition rates of SrTiO3 and SrTi0.8Nb0.2O3 were deduced as 0.78 /pulse for SrTiO3 and 0.57 /pulse for SrTi0.8Nb0.2O3. In addition, laser induced thermoelectric voltage (LITV) effect was measured for the first time in these superlattice thin films. This phenomenon indieales that this kind of artificial atomic layer thermopile structure possesses Seebeck anisotropy. It was found that when the thickness of dielectric SrTiO3 layer n=46.8 nm, for conductive SrTi0.8Nb0.2O3 layer with m=19.0 nm and m=11.4 nm, the average peak voltage of LITV signals reaches the maximum U—P=0.7 V/mJ·mm, and the minimum average response time is τ—=124 ns, respectively.

     

    目录

    /

    返回文章
    返回