搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

交叉相位调制提高半导体激光器混沌载波发射机带宽方法

颜森林

交叉相位调制提高半导体激光器混沌载波发射机带宽方法

颜森林
PDF
导出引用
导出核心图
  • 提出半导体激光器混沌交叉相位调制(XPM)光反馈提高混沌载波发射机带宽方法,建立了有外腔光纤传输反馈XPM控制下的激光动力学物理模型.理论导出XPM作用下激光双反馈频率失谐公式,指出XPM产生的非线性相移影响了激光器增益和线宽增强因子,其光纤二阶非线性效应使激光振幅和相位变化更加丰富,而非线性相移的出现进一步增加了新的频率分量并使频谱展宽.数值结果表明,XPM使激光器混沌带宽增加到4倍以上,使激光混沌张弛振荡频率增加到285倍,其光纤长度、入纤光功率、面镜反射系数、光纤二阶非线性系数等都能影响激光混沌带
    • 基金项目: 江苏省高等学校自然科学基础研究计划(批准号: 08KJ510019)资助的课题.
    [1]

    [1]Roy R, Thornburg K S 1994 Phys. Rev. Lett. 72 2009

    [2]

    [2]Van Wiggeren G D, Roy R 1998 Science 279 1198

    [3]

    [3]Wu L, Zhu S Q 2003 Phys. Lett. A 308 157

    [4]

    [4]Yan S L 2007 Chin. Phys. B 16 3271

    [5]

    [5]Ramos R V, Souza R F 2001 Opt. Cummun. 22 90

    [6]

    [6]Zhou Y, Wu L, Zhu S Q 2005 Chin. Phys. B 14 2196

    [7]

    [7]Zhang F, Chu P L 2003 J. Lightwave Technol. 21 3334

    [8]

    [8]Li X F, Pan W, Ma D, Luo B, Zhang W L, Xiong Y 2006 Acta Phys. Sin. 55 5094 (in Chinese) [李孝峰、潘炜、马冬、罗斌、张伟利、熊悦 2006 物理学报 55 5094]

    [9]

    [9]Yan S L 2008 Acta Phys. Sin. 57 2819 (in Chinese) [颜森林 2008 物理学报 57 2819]

    [10]

    ]Wu J G, Wu Z M, Lin X D, Zhang Y, Zhong D Z, Xia G Q 2005 Acta Phys. Sin. 54 4169 (in Chinese) [吴加贵、吴正茂、林晓东、张毅、钟东洲、夏光琼 2005 物理学报 54 4169]

    [11]

    ]Argyris A, Syvridis D, Larger L, Lodi V A, Colet P, Fischer I, Ojalvo J G, Mirasso C R, Pesquera L, Shore K A 2005 Nature 438 343

    [12]

    ]Lodi V A, Benedetti M, Merlo S, Norgia M, Provinzano B 2005 2 IEEE Photon. Technol. Lett. 17 1995

    [13]

    ]Kusumoto K, Ohtsubo J 2002 Opt. Lett. 27 989

    [14]

    ]Paul J, Lee M W, Shore K A 2005 IEEE Photon. Technol. Lett. 17 920

    [15]

    ]Takiguchi Y, Ohyagi K, Ohtsubo J 2003 Opt. Lett. 28 319

    [16]

    ]Murakami A, Shore K A 2005 Phys. Rev. A 72 053810

    [17]

    ]Wang Y C, Zhang G W, Wang A B, Wang B J, Li Y L, Guo P 2007 Acta Phys. Sin. 56 4372 (in Chinese) [王云才、张耕玮、王安帮、王冰洁、李艳丽、郭萍 2007 物理学报 56 4372]

    [18]

    ]Kong L Q, Wang A B, Wang H H, Wang Y C 2007 Acta Phys. Sin. 57 2266 (in Chinese) [孔令琴、王安帮、王海红、王云才 2007 物理学报 57 2266]

    [19]

    ]Liu X M, Yang X, Lu F, Ng J, Zhou X, Lu C 2005 Opt. Express 13 142

    [20]

    ]Liu X M, Wang T, Shu C, Wang L R, Lin A, Lu K Q, Zhang T Y, Zhao W 2008 Laser Phys. 18 1357

    [21]

    ]Agrawal G P 1989 Nonlinear Fiber Optics (San Diego: Academic)

  • [1]

    [1]Roy R, Thornburg K S 1994 Phys. Rev. Lett. 72 2009

    [2]

    [2]Van Wiggeren G D, Roy R 1998 Science 279 1198

    [3]

    [3]Wu L, Zhu S Q 2003 Phys. Lett. A 308 157

    [4]

    [4]Yan S L 2007 Chin. Phys. B 16 3271

    [5]

    [5]Ramos R V, Souza R F 2001 Opt. Cummun. 22 90

    [6]

    [6]Zhou Y, Wu L, Zhu S Q 2005 Chin. Phys. B 14 2196

    [7]

    [7]Zhang F, Chu P L 2003 J. Lightwave Technol. 21 3334

    [8]

    [8]Li X F, Pan W, Ma D, Luo B, Zhang W L, Xiong Y 2006 Acta Phys. Sin. 55 5094 (in Chinese) [李孝峰、潘炜、马冬、罗斌、张伟利、熊悦 2006 物理学报 55 5094]

    [9]

    [9]Yan S L 2008 Acta Phys. Sin. 57 2819 (in Chinese) [颜森林 2008 物理学报 57 2819]

    [10]

    ]Wu J G, Wu Z M, Lin X D, Zhang Y, Zhong D Z, Xia G Q 2005 Acta Phys. Sin. 54 4169 (in Chinese) [吴加贵、吴正茂、林晓东、张毅、钟东洲、夏光琼 2005 物理学报 54 4169]

    [11]

    ]Argyris A, Syvridis D, Larger L, Lodi V A, Colet P, Fischer I, Ojalvo J G, Mirasso C R, Pesquera L, Shore K A 2005 Nature 438 343

    [12]

    ]Lodi V A, Benedetti M, Merlo S, Norgia M, Provinzano B 2005 2 IEEE Photon. Technol. Lett. 17 1995

    [13]

    ]Kusumoto K, Ohtsubo J 2002 Opt. Lett. 27 989

    [14]

    ]Paul J, Lee M W, Shore K A 2005 IEEE Photon. Technol. Lett. 17 920

    [15]

    ]Takiguchi Y, Ohyagi K, Ohtsubo J 2003 Opt. Lett. 28 319

    [16]

    ]Murakami A, Shore K A 2005 Phys. Rev. A 72 053810

    [17]

    ]Wang Y C, Zhang G W, Wang A B, Wang B J, Li Y L, Guo P 2007 Acta Phys. Sin. 56 4372 (in Chinese) [王云才、张耕玮、王安帮、王冰洁、李艳丽、郭萍 2007 物理学报 56 4372]

    [18]

    ]Kong L Q, Wang A B, Wang H H, Wang Y C 2007 Acta Phys. Sin. 57 2266 (in Chinese) [孔令琴、王安帮、王海红、王云才 2007 物理学报 57 2266]

    [19]

    ]Liu X M, Yang X, Lu F, Ng J, Zhou X, Lu C 2005 Opt. Express 13 142

    [20]

    ]Liu X M, Wang T, Shu C, Wang L R, Lin A, Lu K Q, Zhang T Y, Zhao W 2008 Laser Phys. 18 1357

    [21]

    ]Agrawal G P 1989 Nonlinear Fiber Optics (San Diego: Academic)

  • [1] 王云才, 张耕玮, 王安帮, 王冰洁, 李艳丽, 郭 萍. 光注入提高半导体激光器混沌载波发射机的带宽. 物理学报, 2007, 56(8): 4372-4377. doi: 10.7498/aps.56.4372
    [2] 赵严峰. 双反馈半导体激光器的混沌特性研究. 物理学报, 2009, 58(9): 6058-6062. doi: 10.7498/aps.58.6058
    [3] 杨玲珍, 乔占朵, 邬云翘, 王云才. 掺铒光纤环形激光器混沌带宽特性数值研究. 物理学报, 2010, 59(6): 3965-3972. doi: 10.7498/aps.59.3965
    [4] 苏斌斌, 陈建军, 吴正茂, 夏光琼. 混沌光注入垂直腔面发射激光器混沌输出的时延和带宽特性. 物理学报, 2017, 66(24): 244206. doi: 10.7498/aps.66.244206
    [5] 杨显杰, 陈建军, 夏光琼, 吴加贵, 吴正茂. 主副垂直腔面发射激光器动力学系统混沌输出的时延特征及带宽分析. 物理学报, 2015, 64(22): 224213. doi: 10.7498/aps.64.224213
    [6] 李增, 冯玉玲, 王晓茜, 姚治海. 半导体激光器输出混沌光的延时特性和带宽. 物理学报, 2018, 67(14): 140501. doi: 10.7498/aps.67.20180035
    [7] 张建忠, 王安帮, 张明江, 李晓春, 王云才. 反馈相位随机调制消除混沌半导体激光器的外腔长信息. 物理学报, 2011, 60(9): 094207. doi: 10.7498/aps.60.094207
    [8] 起俊丰, 钟祝强, 王广娜, 夏光琼, 吴正茂. 高斯切趾型光纤布拉格光栅外腔半导体激光器的混沌输出特性. 物理学报, 2017, 66(24): 244207. doi: 10.7498/aps.66.244207
    [9] 王云才, 李艳丽, 王安帮, 王冰洁, 张耕玮, 郭 萍. 激光混沌通信中半导体激光器接收机对高频信号的滤波特性. 物理学报, 2007, 56(8): 4686-4693. doi: 10.7498/aps.56.4686
    [10] 孔令琴, 王安帮, 王海红, 王云才. 光反馈半导体激光器产生低频起伏与高维混沌信号及其演化过程. 物理学报, 2008, 57(4): 2266-2272. doi: 10.7498/aps.57.2266
  • 引用本文:
    Citation:
计量
  • 文章访问数:  3241
  • PDF下载量:  738
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-01-20
  • 修回日期:  2009-02-21
  • 刊出日期:  2010-06-15

交叉相位调制提高半导体激光器混沌载波发射机带宽方法

  • 1. 南京晓庄学院物理与电子工程系,南京 210017
    基金项目: 

    江苏省高等学校自然科学基础研究计划(批准号: 08KJ510019)资助的课题.

摘要: 提出半导体激光器混沌交叉相位调制(XPM)光反馈提高混沌载波发射机带宽方法,建立了有外腔光纤传输反馈XPM控制下的激光动力学物理模型.理论导出XPM作用下激光双反馈频率失谐公式,指出XPM产生的非线性相移影响了激光器增益和线宽增强因子,其光纤二阶非线性效应使激光振幅和相位变化更加丰富,而非线性相移的出现进一步增加了新的频率分量并使频谱展宽.数值结果表明,XPM使激光器混沌带宽增加到4倍以上,使激光混沌张弛振荡频率增加到285倍,其光纤长度、入纤光功率、面镜反射系数、光纤二阶非线性系数等都能影响激光混沌带

English Abstract

参考文献 (21)

目录

    /

    返回文章
    返回