搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多孔材料在压缩载荷作用下的剪切破坏模式分析

刘培生

多孔材料在压缩载荷作用下的剪切破坏模式分析

刘培生
PDF
导出引用
导出核心图
  • 压缩行为是工程材料最为基本的力学性能之一. 本文通过简化结构模型分析了各向同性的三维网状高孔率多孔材料在压缩载荷作用下的破坏模式,其中包括单向压缩、双向压缩和三向压缩等三种承载情形. 在此基础上,得出了这种多孔体受压破坏源于剪切断裂模式时名义主应力与孔率之间的数理关系. 结果表明,该类材料承受压缩载荷时的破坏模式与其材质的种类有关,脆性材质多孔体的孔棱呈拉断破坏模式,而韧性材质多孔体的孔棱则可能出现剪切断裂的破坏模式. 对应得出的强度设计判据可为该类材料在这种承载破坏模式下的应用提供参考.
    • 基金项目: 北京市凝聚态物理重点学科共建项目(批准号:XK100270454)和北京师范大学测试基金(批准号:C09)资助的课题.
    [1]

    Gibson L J, Ashby M F 1999 Cellular Solids: Structure and Properties (Cambridge: Cambridge University Press)

    [2]

    Banhart J 2001 Prog. Mater. Sci. 46 559

    [3]

    Liu P S, Liang K M 2001 J. Mater. Sci. 36 5059

    [4]

    Liu P S 2004 Introduction to Porous Materials (Beijing: Tsinghua University Press) (in Chinese) [刘培生 2004 多孔材料引论 (北京: 清华大学出版社)]

    [5]

    Ma Q L 2004 Acta Phys. Sin. 53 1952 (in Chinese) [马春兰 2004 物理学报 53 1952]

    [6]

    Zhao X F, Fang Y 2006 Acta Phys. Sin. 55 3785(in Chinese) [赵信峰、方 炎 2006 物理学报 55 3785]

    [7]

    Zhang H W, Li Y X 2007 Acta Phys. Sin. 56 4864 (in Chinese) [张华伟、李言祥 2007 物理学报 56 4864]

    [8]

    Wang C F, Li Q S, Hu B, Li W B 2009 Chin. Phys. B 18 2610

    [9]

    Ashby M F, Evans A, Fleck N A, Gibson L J, Hutchinson J W, Wadley H N G 2000 Metal Foams: A Design Guide (Boston: Elsevier Science)

    [10]

    Nagaki S, Sowerby R, Goya M 1991 Mater. Sci. Engi. A 142 163

    [11]

    Silva M G D A, Ramesh K T 1997 Mater. Sci. Engi. A 232 11

    [12]

    Simone A E, Gibson L J 1997 Mater. Sci. Engi. A 229 55

    [13]

    Han F S, Liu C S, Zhu Z G 1998 Acta Phys. Sin. 47 520 (in Chinese) [韩福生、刘长松、朱震刚 1998 物理学报 47 520]

    [14]

    Kovacik J 1998 Acta Materialia 46 5413

    [15]

    Liu P S 2007 Materials Science Research Horizon (New York: NOVA Science Publishers)

    [16]

    Liu P S 2000 J. Advan. Mater. 32 9

    [17]

    Deshpande V S, Fleck N A 2000 J. Mechan. Phys. Solids 48 1253

    [18]

    Badiche X, Forest S, Guibert T, Bienvenu Y, Bartout J D, Ienny P, Croset M, Bernet H 2000 Mater. Sci. Engi. A 289 276

    [19]

    Nieh T G, Higashi K, Wadsworth J 2000 Mater. Sci. Engi. A 283 105

    [20]

    Benouali A H, Froyen L, Delerue J F, Wevers M 2002 Mater. Sci. Technol. 18 489

    [21]

    Kwon Y W, Cooke R E, Park C 2003 Mater. Sci. Engi. A 343 63

    [22]

    Choe H, Dunand D C 2004 Mater. Sci. Engi. A 384 184

    [23]

    Fan H L, Fang D N 2009 Materials and Design 30 1659

    [24]

    Liu P S, Sang H B 2004 International Journal of Iron and Steel Research 11 53

    [25]

    Liu P S 2006 Mater. Sci. Engi. A 422 176

    [26]

    Liu P S 2007 Materials and Design 28 2678

    [27]

    Liu P S 2009 Mater. Sci. Engi. A 507 190

    [28]

    Liu P S, Chen G F, Chen Y M 2009 Philosophical Magazine Letters 89 655

    [29]

    Liu P S 2009 Materials and Design 31 2264

    [30]

    Fan Q S 2008 Engineering Mechanics (Beijing: Machinery Industrial Press) (in Chinese) [范钦珊 2008 工程力学 (北京:机械工业出版社) Liu P S 2006 Chin. J. Mater. Res. 20 64 (in Chinese) 〖刘培生 2006 材料研究学报20 64]

  • [1]

    Gibson L J, Ashby M F 1999 Cellular Solids: Structure and Properties (Cambridge: Cambridge University Press)

    [2]

    Banhart J 2001 Prog. Mater. Sci. 46 559

    [3]

    Liu P S, Liang K M 2001 J. Mater. Sci. 36 5059

    [4]

    Liu P S 2004 Introduction to Porous Materials (Beijing: Tsinghua University Press) (in Chinese) [刘培生 2004 多孔材料引论 (北京: 清华大学出版社)]

    [5]

    Ma Q L 2004 Acta Phys. Sin. 53 1952 (in Chinese) [马春兰 2004 物理学报 53 1952]

    [6]

    Zhao X F, Fang Y 2006 Acta Phys. Sin. 55 3785(in Chinese) [赵信峰、方 炎 2006 物理学报 55 3785]

    [7]

    Zhang H W, Li Y X 2007 Acta Phys. Sin. 56 4864 (in Chinese) [张华伟、李言祥 2007 物理学报 56 4864]

    [8]

    Wang C F, Li Q S, Hu B, Li W B 2009 Chin. Phys. B 18 2610

    [9]

    Ashby M F, Evans A, Fleck N A, Gibson L J, Hutchinson J W, Wadley H N G 2000 Metal Foams: A Design Guide (Boston: Elsevier Science)

    [10]

    Nagaki S, Sowerby R, Goya M 1991 Mater. Sci. Engi. A 142 163

    [11]

    Silva M G D A, Ramesh K T 1997 Mater. Sci. Engi. A 232 11

    [12]

    Simone A E, Gibson L J 1997 Mater. Sci. Engi. A 229 55

    [13]

    Han F S, Liu C S, Zhu Z G 1998 Acta Phys. Sin. 47 520 (in Chinese) [韩福生、刘长松、朱震刚 1998 物理学报 47 520]

    [14]

    Kovacik J 1998 Acta Materialia 46 5413

    [15]

    Liu P S 2007 Materials Science Research Horizon (New York: NOVA Science Publishers)

    [16]

    Liu P S 2000 J. Advan. Mater. 32 9

    [17]

    Deshpande V S, Fleck N A 2000 J. Mechan. Phys. Solids 48 1253

    [18]

    Badiche X, Forest S, Guibert T, Bienvenu Y, Bartout J D, Ienny P, Croset M, Bernet H 2000 Mater. Sci. Engi. A 289 276

    [19]

    Nieh T G, Higashi K, Wadsworth J 2000 Mater. Sci. Engi. A 283 105

    [20]

    Benouali A H, Froyen L, Delerue J F, Wevers M 2002 Mater. Sci. Technol. 18 489

    [21]

    Kwon Y W, Cooke R E, Park C 2003 Mater. Sci. Engi. A 343 63

    [22]

    Choe H, Dunand D C 2004 Mater. Sci. Engi. A 384 184

    [23]

    Fan H L, Fang D N 2009 Materials and Design 30 1659

    [24]

    Liu P S, Sang H B 2004 International Journal of Iron and Steel Research 11 53

    [25]

    Liu P S 2006 Mater. Sci. Engi. A 422 176

    [26]

    Liu P S 2007 Materials and Design 28 2678

    [27]

    Liu P S 2009 Mater. Sci. Engi. A 507 190

    [28]

    Liu P S, Chen G F, Chen Y M 2009 Philosophical Magazine Letters 89 655

    [29]

    Liu P S 2009 Materials and Design 31 2264

    [30]

    Fan Q S 2008 Engineering Mechanics (Beijing: Machinery Industrial Press) (in Chinese) [范钦珊 2008 工程力学 (北京:机械工业出版社) Liu P S 2006 Chin. J. Mater. Res. 20 64 (in Chinese) 〖刘培生 2006 材料研究学报20 64]

  • [1] 刘培生. 多孔材料在压缩载荷作用下的屈曲失效模式分析. 物理学报, 2010, 59(12): 8801-8806. doi: 10.7498/aps.59.8801
    [2] 陈俊祥, 于继东, 耿华运, 贺红亮. 多孔材料的温度和压强计算. 物理学报, 2017, 66(5): 056401. doi: 10.7498/aps.66.056401
    [3] 杨淑敏, 韩伟, 顾建军, 李海涛, 岂云开. 虹彩环形结构色氧化铝薄膜的制备与研究. 物理学报, 2015, 64(7): 076102. doi: 10.7498/aps.64.076102
    [4] 辛成舟, 马健男, 马静, 南策文. 厚度剪切模式铌酸锂基复合材料的磁电性能优化. 物理学报, 2017, 66(6): 067502. doi: 10.7498/aps.66.067502
    [5] 陈光德, 石振海, 吕惠民. 纯六方相氮化铝泡沫材料的合成. 物理学报, 2009, 58(9): 6403-6407. doi: 10.7498/aps.58.6403
    [6] 马大猷, 李沛滋, 戴根华, 王宏玉. 多孔材料的出流和多孔扩散消声理论. 物理学报, 1978, 163(6): 631-644. doi: 10.7498/aps.27.631
    [7] 辛成舟, 马健男, 马静, 南策文. 伸缩-剪切模式自偏置铌酸锂基复合材料的磁电性能和高频谐振响应. 物理学报, 2018, 67(15): 157502. doi: 10.7498/aps.67.20180810
    [8] 石振海, 吕惠民, 赵超, 魏萍. 空心微球/网络复合型碳泡沫材料制备与机理分析. 物理学报, 2010, 59(11): 7956-7960. doi: 10.7498/aps.59.7956
    [9] 程赛, 吕惠民, 崔静雅. 退火重结晶制备AlN/C复合泡沫材料及其力学性能研究. 物理学报, 2012, 61(3): 036203. doi: 10.7498/aps.61.036203
    [10] 税敏, 于明海, 储根柏, 席涛, 范伟, 赵永强, 辛建婷, 何卫华, 谷渝秋. 激光加载下金属锡材料微喷颗粒与低密度泡沫混合实验研究. 物理学报, 2019, 68(7): 076201. doi: 10.7498/aps.68.20182280
    [11] 吴文平, 郭雅芳, 汪越胜, 徐爽. 镍基单晶高温合金界面位错网在剪切载荷作用下的演化. 物理学报, 2011, 60(5): 056802. doi: 10.7498/aps.60.056802
    [12] 喻寅, 王文强, 杨佳, 张友君, 蒋冬冬, 贺红亮. 多孔脆性介质冲击波压缩破坏的细观机理和图像. 物理学报, 2012, 61(4): 048103. doi: 10.7498/aps.61.048103
    [13] 席涛, 范伟, 储根柏, 税敏, 何卫华, 赵永强, 辛建婷, 谷渝秋. 超高应变率载荷下铜材料层裂特性研究. 物理学报, 2017, 66(4): 040202. doi: 10.7498/aps.66.040202
    [14] 毕忠伟, 孙其诚, 刘建国, 金峰, 张楚汉. 双轴压缩下颗粒物质剪切带的形成与发展. 物理学报, 2011, 60(3): 034502. doi: 10.7498/aps.60.034502
    [15] 刘亚琴, 杨士莪, 张海刚, 王笑寒. 变声速弹性沉积层下压缩波与剪切波的耦合影响. 物理学报, 2018, 67(23): 234303. doi: 10.7498/aps.67.20181600
    [16] 张冬冬, 谭建国, 姚霄. 入流激励下可压缩剪切层中Kelvin-Helmholtz涡的响应特性. 物理学报, 2020, 69(2): 024701. doi: 10.7498/aps.69.20190681
    [17] 赵文彬, 张冠军, 严 璋. 半导体闪络引起的材料表面破坏现象研究. 物理学报, 2008, 57(8): 5130-5137. doi: 10.7498/aps.57.5130
    [18] 沈(岂页)华, 陈仪明, 朱文章. 非破坏性研究半导体材料特性参数. 物理学报, 1995, 44(8): 1344-1352. doi: 10.7498/aps.44.1344
    [19] 夏钟福, 陈钢进, 肖慧明. 电晕充电多孔PTFE/PP复合驻极体过滤材料的电荷存储特性. 物理学报, 2006, 55(5): 2464-2469. doi: 10.7498/aps.55.2464
    [20] 张强, 户田裕之. 同步辐射K边减影成像及其在多孔金属材料中的应用. 物理学报, 2011, 60(11): 114103. doi: 10.7498/aps.60.114103
  • 引用本文:
    Citation:
计量
  • 文章访问数:  2632
  • PDF下载量:  685
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-10-27
  • 修回日期:  2009-11-05
  • 刊出日期:  2010-07-15

多孔材料在压缩载荷作用下的剪切破坏模式分析

  • 1. 北京师范大学核科学与技术学院,射线束技术与材料改性教育部重点实验室,北京 100875
    基金项目: 

    北京市凝聚态物理重点学科共建项目(批准号:XK100270454)和北京师范大学测试基金(批准号:C09)资助的课题.

摘要: 压缩行为是工程材料最为基本的力学性能之一. 本文通过简化结构模型分析了各向同性的三维网状高孔率多孔材料在压缩载荷作用下的破坏模式,其中包括单向压缩、双向压缩和三向压缩等三种承载情形. 在此基础上,得出了这种多孔体受压破坏源于剪切断裂模式时名义主应力与孔率之间的数理关系. 结果表明,该类材料承受压缩载荷时的破坏模式与其材质的种类有关,脆性材质多孔体的孔棱呈拉断破坏模式,而韧性材质多孔体的孔棱则可能出现剪切断裂的破坏模式. 对应得出的强度设计判据可为该类材料在这种承载破坏模式下的应用提供参考.

English Abstract

参考文献 (30)

目录

    /

    返回文章
    返回