搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米多晶铁的冲击相变研究

马文 经福谦 张亚林 祝文军

纳米多晶铁的冲击相变研究

马文, 经福谦, 张亚林, 祝文军
PDF
导出引用
导出核心图
  • 利用分子动力学方法研究了不同晶粒度的纳米多晶铁在冲击压缩下的结构相变过程,模拟结果表明:纳米多晶铁的冲击结构相变(由体心立方(bcc)结构 α 相到六角密排(hcp)结构 ε 相)发生的临界冲击应力在15 GPa左右.纳米多晶铁在经过弹性压缩变形后,晶界导致的塑性变形开始发生,然后大多数相变从晶界成核并最终发展为大规模相变.不同变形过程在应力和粒子速度剖面上能得到清晰的体现,并通过微观原子结构分析分辨.冲击压缩后的微观结构以晶界原子和以fcc结构原子充当孪晶界的hcp原子为主.晶粒度明显影响晶界变形及相变
    • 基金项目: 冲击波物理与爆轰物理国防科技重点实验室基金(批准号:9140C6702011104,9140C6701010902)资助的课题.
    [1]

    Bancroft D, Peterson E L, Minshall S 1956 J. Appl. Phys. 27 291

    [2]

    Asay J R, Chhabildas L C 2003 High-Pressure Shock Compression of Solids Ⅵ edited by Horie Y, Davison L, Thadhani N N (New York: Springer)

    [3]

    Kalantar D H, Belak J F, Collins G W, Colvin J D, Davies H M, Eggert J H, Germann T C, Hawreliak J, Holian B L, Kadau K, Lomdahl P S, Lorenzana H E, Meyers M A, Rosolankova K, Schneider M S, Sheppard J, Stölken J S, Wark J S 2005 Phys. Rev. Lett. 95 075502

    [4]

    Kadau K, Germann T C, Lomdahl P S, Albers R C, Wark J S, Higginbotham A, Holian B L 2007 Phys. Rev. Lett. 98 135701

    [5]

    Kadau K, Germann T C, Lomdahl P S, Holian B L 2002 Science 296 1681

    [6]

    Kadau K, Germann T C, Lomdahl P S, Holian B L 2005 Phys. Rev. B 72 064210

    [7]

    Cui X L, Zhu W J, He H L, Deng X L, Li Y J 2008 Phys. Rev. B 78 024115

    [8]

    Cui X L, Zhu W J, Deng X L, Li Y J, He H L 2006 Acta Phys. Sin. 55 5545 (in Chinese) [崔新林、祝文军、邓小良、李英骏、贺红亮 2006 物理学报 55 5545]

    [9]

    Shao J L, Qin C S, Wang P 2009 Acta Phys. Sin. 58 1936 (in Chinese) [邵建立、秦承森、王 裴 2009 物理学报 58 1936]

    [10]

    Shao J L, Qin C S, Wang P, Zhou H Q 2007 Acta Phys. Sin. 56 5389 (in Chinese) [邵建立、秦承森、王裴、周洪强 2007 物 理学报 56 5389] 〖11] Shao J L, Qin C S, Wang P, Zhou H Q 2008 Acta Phys. Sin. 57 1254 (in Chinese) [邵建立、秦承森、王 裴、周洪强 2008 物理学报 57 1254]

    [11]

    Ma W, Zhu W J, Jing F Q 2010 Appl. Phys. Lett. 97 121903

    [12]

    Ma W, Zhu W J, Chen K G, Jing F Q 2011 Acta Phys. Sin. 60 016107 (in Chinese) [马 文、祝文军、陈开果、经福谦 2011 物理学报 60 016107]

    [13]

    Chen D 1995 Comput. Mater. Sci. 3 327

    [14]

    Ma W, Zhu W J, Zhang Y L, Chen K G, Jing F Q, Deng X L 2010 Acta Phys. Sin. 59 4781 (in Chinese) [马 文、祝文军、张亚林、陈开果、邓小良、经福谦 2010 物理学报 59 4781]

    [15]

    Deng X L, Zhu W J, He H L, Wu D X, Jing F Q 2006 Acta Phys. Sin. 55 4767 (in Chinese) [邓小良、祝文军、贺红亮、伍登学、经福谦 2006 物理学报 55 4767]

    [16]

    Chen K G, Zhu W J, Ma W, Deng X L, He H L, Jing F Q 2010 Acta Phys. Sin. 59 1225(in Chinese) [陈开果、祝文军、马 文、邓小良、贺红亮、经福谦 2010 物理学报 59 1225]

    [17]

    Harrison P, Voter A F, Chen S P 1989 in Atomic Simulation of Materials Edited by Vitek V, Srolovitz D J (New York: Plenum Press)

    [18]

    Gupta Y M, Winey J M, Trivedi P B, Lalone B M, Smith R F, Eggert J H, Collins G W 2009 J. Appl. Phys. 105 036107

    [19]

    Wang H T, Yang W 2004 Adv. Mech. 34 314 (in Chinese) [王宏涛、杨 卫 2004 力学进展 34 314]

  • [1]

    Bancroft D, Peterson E L, Minshall S 1956 J. Appl. Phys. 27 291

    [2]

    Asay J R, Chhabildas L C 2003 High-Pressure Shock Compression of Solids Ⅵ edited by Horie Y, Davison L, Thadhani N N (New York: Springer)

    [3]

    Kalantar D H, Belak J F, Collins G W, Colvin J D, Davies H M, Eggert J H, Germann T C, Hawreliak J, Holian B L, Kadau K, Lomdahl P S, Lorenzana H E, Meyers M A, Rosolankova K, Schneider M S, Sheppard J, Stölken J S, Wark J S 2005 Phys. Rev. Lett. 95 075502

    [4]

    Kadau K, Germann T C, Lomdahl P S, Albers R C, Wark J S, Higginbotham A, Holian B L 2007 Phys. Rev. Lett. 98 135701

    [5]

    Kadau K, Germann T C, Lomdahl P S, Holian B L 2002 Science 296 1681

    [6]

    Kadau K, Germann T C, Lomdahl P S, Holian B L 2005 Phys. Rev. B 72 064210

    [7]

    Cui X L, Zhu W J, He H L, Deng X L, Li Y J 2008 Phys. Rev. B 78 024115

    [8]

    Cui X L, Zhu W J, Deng X L, Li Y J, He H L 2006 Acta Phys. Sin. 55 5545 (in Chinese) [崔新林、祝文军、邓小良、李英骏、贺红亮 2006 物理学报 55 5545]

    [9]

    Shao J L, Qin C S, Wang P 2009 Acta Phys. Sin. 58 1936 (in Chinese) [邵建立、秦承森、王 裴 2009 物理学报 58 1936]

    [10]

    Shao J L, Qin C S, Wang P, Zhou H Q 2007 Acta Phys. Sin. 56 5389 (in Chinese) [邵建立、秦承森、王裴、周洪强 2007 物 理学报 56 5389] 〖11] Shao J L, Qin C S, Wang P, Zhou H Q 2008 Acta Phys. Sin. 57 1254 (in Chinese) [邵建立、秦承森、王 裴、周洪强 2008 物理学报 57 1254]

    [11]

    Ma W, Zhu W J, Jing F Q 2010 Appl. Phys. Lett. 97 121903

    [12]

    Ma W, Zhu W J, Chen K G, Jing F Q 2011 Acta Phys. Sin. 60 016107 (in Chinese) [马 文、祝文军、陈开果、经福谦 2011 物理学报 60 016107]

    [13]

    Chen D 1995 Comput. Mater. Sci. 3 327

    [14]

    Ma W, Zhu W J, Zhang Y L, Chen K G, Jing F Q, Deng X L 2010 Acta Phys. Sin. 59 4781 (in Chinese) [马 文、祝文军、张亚林、陈开果、邓小良、经福谦 2010 物理学报 59 4781]

    [15]

    Deng X L, Zhu W J, He H L, Wu D X, Jing F Q 2006 Acta Phys. Sin. 55 4767 (in Chinese) [邓小良、祝文军、贺红亮、伍登学、经福谦 2006 物理学报 55 4767]

    [16]

    Chen K G, Zhu W J, Ma W, Deng X L, He H L, Jing F Q 2010 Acta Phys. Sin. 59 1225(in Chinese) [陈开果、祝文军、马 文、邓小良、贺红亮、经福谦 2010 物理学报 59 1225]

    [17]

    Harrison P, Voter A F, Chen S P 1989 in Atomic Simulation of Materials Edited by Vitek V, Srolovitz D J (New York: Plenum Press)

    [18]

    Gupta Y M, Winey J M, Trivedi P B, Lalone B M, Smith R F, Eggert J H, Collins G W 2009 J. Appl. Phys. 105 036107

    [19]

    Wang H T, Yang W 2004 Adv. Mech. 34 314 (in Chinese) [王宏涛、杨 卫 2004 力学进展 34 314]

  • [1] 邵建立, 王 裴, 秦承森, 周洪强. 铁冲击相变的分子动力学研究. 物理学报, 2007, 56(9): 5389-5393. doi: 10.7498/aps.56.5389
    [2] 贺红亮, 祝文军, 邓小良, 李英骏, 崔新林. 冲击波压缩下含纳米孔洞单晶铁的结构相变研究. 物理学报, 2006, 55(10): 5545-5550. doi: 10.7498/aps.55.5545
    [3] 陈军, 张景琳, 陈栋泉, 经福谦. 冲击作用下金属表面微喷射的分子动力学模拟. 物理学报, 2002, 51(10): 2386-2392. doi: 10.7498/aps.51.2386
    [4] 陈开果, 邓小良, 马文, 经福谦, 祝文军, 贺红亮. 冲击波在纳米金属铜中传播的分子动力学模拟. 物理学报, 2010, 59(2): 1225-1232. doi: 10.7498/aps.59.1225
    [5] 陈向荣, 邓小良, 宋振飞, 王海燕, 祝文军. 冲击加载下铝中氦泡和孔洞的塑性变形特征研究. 物理学报, 2009, 58(2): 1154-1160. doi: 10.7498/aps.58.1154
    [6] 马文, 陆彦文. 纳米多晶铜中冲击波阵面的分子动力学研究. 物理学报, 2013, 62(3): 036201. doi: 10.7498/aps.62.036201
    [7] 冯玉军, 杜金梅, 谷 岩, 蒋冬冬. 冲击波加载下PZT 95/5铁电陶瓷的电阻率研究. 物理学报, 2008, 57(1): 566-570. doi: 10.7498/aps.57.566
    [8] 伍友成, 刘高旻, 戴文峰, 高志鹏, 贺红亮, 郝世荣, 邓建军. 冲击波作用下Pb(Zr0.95Ti0.05)O3铁电陶瓷去极化后电阻率动态特性. 物理学报, 2017, 66(4): 047201. doi: 10.7498/aps.66.047201
    [9] 祝文军, 陈开果, 马文, 经福谦. 晶界对纳米多晶铝中冲击波阵面结构影响的分子动力学研究. 物理学报, 2011, 60(1): 016107. doi: 10.7498/aps.60.016107
    [10] 谷岩, 刘雨生, 贺红亮, 陈学锋, 王根水, 董显林, 冯宁博, 聂恒昌. 冲击波加载下孔隙率对Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3 铁电陶瓷去极化性能的影响. 物理学报, 2010, 59(12): 8897-8902. doi: 10.7498/aps.59.8897
  • 引用本文:
    Citation:
计量
  • 文章访问数:  3369
  • PDF下载量:  879
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-12-21
  • 修回日期:  2011-02-24
  • 刊出日期:  2011-06-15

纳米多晶铁的冲击相变研究

  • 1. (1)国防科学技术大学物理系,长沙 410073;中国工程物理研究院流体物理研究所冲击波物理与爆轰物理国防科技重点实验室,绵阳 621900; (2)中国工程物理研究院计算机应用研究所,绵阳 621900; (3)中国工程物理研究院流体物理研究所冲击波物理与爆轰物理国防科技重点实验室,绵阳 621900
    基金项目: 

    冲击波物理与爆轰物理国防科技重点实验室基金(批准号:9140C6702011104,9140C6701010902)资助的课题.

摘要: 利用分子动力学方法研究了不同晶粒度的纳米多晶铁在冲击压缩下的结构相变过程,模拟结果表明:纳米多晶铁的冲击结构相变(由体心立方(bcc)结构 α 相到六角密排(hcp)结构 ε 相)发生的临界冲击应力在15 GPa左右.纳米多晶铁在经过弹性压缩变形后,晶界导致的塑性变形开始发生,然后大多数相变从晶界成核并最终发展为大规模相变.不同变形过程在应力和粒子速度剖面上能得到清晰的体现,并通过微观原子结构分析分辨.冲击压缩后的微观结构以晶界原子和以fcc结构原子充当孪晶界的hcp原子为主.晶粒度明显影响晶界变形及相变

English Abstract

参考文献 (19)

目录

    /

    返回文章
    返回