搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强直流场介质表面次级电子倍增效应的数值模拟研究

蔡利兵 王建国 朱湘琴

强直流场介质表面次级电子倍增效应的数值模拟研究

蔡利兵, 王建国, 朱湘琴
PDF
导出引用
导出核心图
  • 通过粒子模拟方法,实现了强直流场下介质表面击穿过程中次级电子倍增效应的数值模拟.具体研究了强直流场场强、介质表面光滑度和次级电子产生率等对次级电子倍增的影响,以及倾斜直流场和外加磁场对次级电子倍增的抑制.结果表明,选择次级电子产生率较低的介质材料和倾斜强直流场可以有效降低次级电子倍增效应的强度,而外加磁场必须超过一定值时才可以有效降低次级电子倍增强度.
    [1]

    Bluhm H 2008 Pulsed Power System: Principles and Applications (Beijing: Tsinghua University Press) pp645 (in Chinese)[布鲁姆H 2008 脉冲功率系统的原理与应用 (中译本) (北京:清华大学出版社) 第645页]

    [2]
    [3]

    Liu X S 2007 High Pulsed Power Technology (Beijing: National Defense Industry Press) pp314326 (in Chinese)[刘锡三 2007 高功率脉冲技术 (北京: 国防工业出版社) 第314326页]

    [4]
    [5]

    Vaughan R M 1988 IEEE Trans. Electron Dev. 35 1172

    [6]
    [7]

    Neuber A A, Butcher M, Hatfield L L, Krompholz H G 1999 J. Appl. Phys. 85 3084

    [8]
    [9]

    Neuber A A, Butcher M, Krompholz H G, Hatfield L L, Kristiansen M 2000 IEEE Trans. Plasma Sci. 28 1593

    [10]

    Krile J T, Neuber A A, Dickens J C, Krompholz H G 2005 IEEE Trans. Plasma Sci. 33 1149

    [11]
    [12]

    Krile J T, Neuber A A, Dickens J C, Krompholz H G 2004 IEEE Trans. Plasma Sci. 32 1828

    [13]
    [14]
    [15]

    Kishek R A, Lau Y Y 1998 Phys. Rev. Lett. 80 193

    [16]

    Vaughan R M 1993 IEEE Trans Electron Dev. 40 830

    [17]
    [18]

    Hao J H, Ding W, Dong Z W 2006 Acta Phys. Sin. 55 4789 (in Chinese) [郝建红、丁 武、董志伟 2006 物理学报 55 4789]

    [19]
    [20]

    Ying X H, Hao J H 2009 Acta Phys. Sin. 58 4799 (in Chinese) [应旭华、郝建红 2009 物理学报 58 4799]

    [21]
    [22]

    Kim H C, Verboncoeur J P 2006 Phys. Plasma 13 123506

    [23]
    [24]

    Cai L B, Wang J G 2009 Acta Phys. Sin. 58 3268 (in Chinese) [蔡利兵、王建国 2009 物理学报 58 3268]

    [25]
    [26]

    Cai L B, Wang J G 2010 Acta Phys. Sin. 59 1143 (in Chinese) [蔡利兵、王建国 2010 物理学报 59 1143]

    [27]
    [28]

    Cai L B, Wang J G 2011 Acta Phys. Sin. 60 025217 (in Chinese) [蔡利兵、王建国 2011 物理学报 60 025217]

    [29]
    [30]

    Korzekwa R, Lehr F M, Krompholz H G, Kristiansen M 1989 IEEE Trans.Plasma Sci. 17 612

    [31]
    [32]

    Korzekwa R, Lehr F M, Krompholz H G, Kristiansen M 1991 IEEE Trans. Electron Dev. 38 745

    [33]
    [34]
    [35]

    Fu Z F, Hu Y Q 1995 Numerical Simulation of Space Plasma (Hefei: Anhui Science and Technology Publishers) pp433476 (in Chinese) [傅竹风、胡友秋 1995 空间等离子体数值模拟 (合肥: 安徽科学技术出版社) 第433476页]

  • [1]

    Bluhm H 2008 Pulsed Power System: Principles and Applications (Beijing: Tsinghua University Press) pp645 (in Chinese)[布鲁姆H 2008 脉冲功率系统的原理与应用 (中译本) (北京:清华大学出版社) 第645页]

    [2]
    [3]

    Liu X S 2007 High Pulsed Power Technology (Beijing: National Defense Industry Press) pp314326 (in Chinese)[刘锡三 2007 高功率脉冲技术 (北京: 国防工业出版社) 第314326页]

    [4]
    [5]

    Vaughan R M 1988 IEEE Trans. Electron Dev. 35 1172

    [6]
    [7]

    Neuber A A, Butcher M, Hatfield L L, Krompholz H G 1999 J. Appl. Phys. 85 3084

    [8]
    [9]

    Neuber A A, Butcher M, Krompholz H G, Hatfield L L, Kristiansen M 2000 IEEE Trans. Plasma Sci. 28 1593

    [10]

    Krile J T, Neuber A A, Dickens J C, Krompholz H G 2005 IEEE Trans. Plasma Sci. 33 1149

    [11]
    [12]

    Krile J T, Neuber A A, Dickens J C, Krompholz H G 2004 IEEE Trans. Plasma Sci. 32 1828

    [13]
    [14]
    [15]

    Kishek R A, Lau Y Y 1998 Phys. Rev. Lett. 80 193

    [16]

    Vaughan R M 1993 IEEE Trans Electron Dev. 40 830

    [17]
    [18]

    Hao J H, Ding W, Dong Z W 2006 Acta Phys. Sin. 55 4789 (in Chinese) [郝建红、丁 武、董志伟 2006 物理学报 55 4789]

    [19]
    [20]

    Ying X H, Hao J H 2009 Acta Phys. Sin. 58 4799 (in Chinese) [应旭华、郝建红 2009 物理学报 58 4799]

    [21]
    [22]

    Kim H C, Verboncoeur J P 2006 Phys. Plasma 13 123506

    [23]
    [24]

    Cai L B, Wang J G 2009 Acta Phys. Sin. 58 3268 (in Chinese) [蔡利兵、王建国 2009 物理学报 58 3268]

    [25]
    [26]

    Cai L B, Wang J G 2010 Acta Phys. Sin. 59 1143 (in Chinese) [蔡利兵、王建国 2010 物理学报 59 1143]

    [27]
    [28]

    Cai L B, Wang J G 2011 Acta Phys. Sin. 60 025217 (in Chinese) [蔡利兵、王建国 2011 物理学报 60 025217]

    [29]
    [30]

    Korzekwa R, Lehr F M, Krompholz H G, Kristiansen M 1989 IEEE Trans.Plasma Sci. 17 612

    [31]
    [32]

    Korzekwa R, Lehr F M, Krompholz H G, Kristiansen M 1991 IEEE Trans. Electron Dev. 38 745

    [33]
    [34]
    [35]

    Fu Z F, Hu Y Q 1995 Numerical Simulation of Space Plasma (Hefei: Anhui Science and Technology Publishers) pp433476 (in Chinese) [傅竹风、胡友秋 1995 空间等离子体数值模拟 (合肥: 安徽科学技术出版社) 第433476页]

  • 引用本文:
    Citation:
计量
  • 文章访问数:  2177
  • PDF下载量:  647
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-05-16
  • 修回日期:  2010-09-25
  • 刊出日期:  2011-04-05

强直流场介质表面次级电子倍增效应的数值模拟研究

  • 1. 西北核技术研究所, 西安 710024;
  • 2. 西安交通大学电子与信息工程学院,西安 710049

摘要: 通过粒子模拟方法,实现了强直流场下介质表面击穿过程中次级电子倍增效应的数值模拟.具体研究了强直流场场强、介质表面光滑度和次级电子产生率等对次级电子倍增的影响,以及倾斜直流场和外加磁场对次级电子倍增的抑制.结果表明,选择次级电子产生率较低的介质材料和倾斜强直流场可以有效降低次级电子倍增效应的强度,而外加磁场必须超过一定值时才可以有效降低次级电子倍增强度.

English Abstract

参考文献 (35)

目录

    /

    返回文章
    返回