搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高质量大面积石墨烯的化学气相沉积制备方法研究

王文荣 周玉修 李铁 王跃林 谢晓明

引用本文:
Citation:

高质量大面积石墨烯的化学气相沉积制备方法研究

王文荣, 周玉修, 李铁, 王跃林, 谢晓明

Research on synthesis of high-quality and large-scale graphene films by chemical vapor deposition

Wang Wen-Rong, Zhou Yu-Xiu, Li Tie, Wang Yue-Lin, Xie Xiao-Ming
PDF
导出引用
  • 石墨烯因其奇特的能带结构和优异的物理性能而成为近年来大家研究的热点, 但是目前单层石墨烯的质量与尺寸制约了其实际应用的发展. 本文采用常压化学气相沉积(CVD)方法, 基于铜箔衬底, 利用甲烷作为碳源制备了高质量大面积的单层与多层石墨烯. 研究发现: 高温度、稀薄的甲烷浓度、较短的生长时间以及合适的气体流速是制备高质量、大面积石墨烯的关键. Raman光谱, 扫描电子显微镜、透射电子显微镜等表征结果表明: 制备的石墨烯主要为单层, 仅铜箔晶界处有少量多层石墨烯. 电学测试表明CVD制备的石墨烯在低温时呈现出较明显的类半导体特性; 薄膜电阻随外界磁场的增大而减小.
    Graphene has received great interest because of its peculiar band structure and excellent physical properties. But today, the development of graphene is limited to its size and quality. In this paper, single- and multilayer graphene films were synthesized on copper foils by chemical vapor deposition(CVD) using methane at ambient pressure. Experiment results find the high temperature, low concentration of methane gas, shorter growth time and suitable gas flow are the key to get high-quality and large-scale graphene films. Raman spectra, scanning electron microscope(SEM) and transmission electron microscope(TEM) characterization indicate the graphene films are mostly single-layer, only with rare area having multilayer around copper boundaries. Further electrical tests show the graphene films grown by CVD method represent semiconductor behaviors under low temperature and the sheet resistance of graphene films is decreasing with the external magnetic field increasing.
    • 基金项目: 国家科技重大专项(批准号: 2011ZX02707)、中科院知识创新工程重要方向项目(批准号: KGCX2-YW-23)、国家自然科学基金创新团队(批准号: 61021064)、国家自然科学基金(批准号: 60936001, 60876037)资助的课题.
    • Funds: Project supported by the Important National Science and Technology Specific Projects (Grant No. 2011ZX02707), the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KGCX2-YW-23), the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (Grant No. 61021064), and the National Natural Science Foundation of China (Grant Nos. 60936001, 60876037).
    [1]

    Geim A K, Novoselov K S 2007 Nature Mater. 6 183

    [2]

    Han T W, He P F 2010 Acta Phys. Sin. 59 3408 (in Chinese) [韩同伟, 贺鹏飞 2010 物理学报 59 3408]

    [3]

    Neto A H C, Guinea F, Peres N M R, Novoselov K S, Geim A K2009 Rev. Mod. Phys. 81 109

    [4]

    Hu H X, Zhang Z H, Liu X H, Qiu M, Ding K H 2009 Acta Phys.Sin. 59 7156 (in Chinese) [胡海鑫, 张振华, 刘新海, 邱明, 丁开和 2010 物理学报 59 7156]

    [5]

    Tan C L, Tan Z B, Ma L, Chen J, Yang F, Qu F M, Liu G T, YangH F, Yang C L, Lü L 2009 Acta Phys. Sin. 58 5726 (in Chinese) [谭长玲, 谭振兵, 马丽, 陈军, 杨帆, 屈凡明, 刘广同, 杨海方, 杨昌黎, 吕力 2009 物理学报 58 5726]

    [6]

    Ruoff R 2008 Nature Nanotech. 3 10

    [7]

    Wu Y Q, Lin Y M, Bol A A, Jenkins K A, Xia F N, Farmer D B,Zhu Y, Avouris P 2011 Nature 472 74

    [8]

    Park N, Hong S, Kim G, Jhi S H 2007 J. Am. Chem. Soc. 1298999

    [9]

    Heo C, Yoo J, Lee S, Jo A, Jung S, Yoo H, Lee Y H, Suh M 2011Biomaterials 32 19

    [10]

    Bonaccorso F, Sun Z, Hasan T, Ferrari A C 2010 Nature Photonics4 611

    [11]

    Loh K P, Bao Q L, Eda G, Chhowalla M 2011 Nature Chemistry2 1015

    [12]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y,Dubonos S V, Grigorieva I V, Firsov 2004 Science 306 666

    [13]

    Stankovich S , Dikin D A, Piner R D, Kohlhass K A, KleinhammesA, Jia Y, Wu Y, Nguyen S T, Ruoff R S 2007 Carbon 45 1558

    [14]

    Berger C, Song Z M, Li X B, Wu X S, Brown N, Naud C, MayouD, Li T, Hass J, Marchenkov A N, Conrad E H, First P N, Heer W A 2006 Science 312 1191

    [15]

    Rummeli M H, Bachmatiuk A, Scott A, Borrnert F, Warner J H,Hoffman V, Lin J H, Cuniberti G, Buchner B 2010 ACS Nano 44206

    [16]

    Wei D C, Liu Y Q, Zhang H L, Huang L P, Wu Bin, Chen J Y, Yu G 2009 J. Am. Chem. Soc. 131 11147

    [17]

    Ding X L, Ding G Q, Xie X M, Huang F Q, Jiang M H 2011Carbon 49 2522

    [18]

    Reina A, Jia X T, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus M S, Kong J 2009 Nano Lett. 9 30

    [19]

    Pan Y, Shi D X, Gao H J 2007 Chin. Phys. 16 3151

    [20]

    Coraus J, N'Diaye A, Engler M, Busse C, Wall D, Buckanie N,Heringdorf F J M, Gastel R, Poelsema B, Michely T 2009 New J.Phys. 11 023006

    [21]

    Li X S, Cai W W, An J H, Kim S, Nah J, Yang D X, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff RS 2009 Science 324 1312

    [22]

    Su C Y, Fu D L, Lu A Y, Liu K K, Xu Y P, Juang Z Y, Li L J 2011 Nanotechnology 22 185309

    [23]

    Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, MauriF, Piscanec S, Jiang D, Novoselov K S, Roth S, Geim A K 2006Phys. Rev. Lett. 97 187401

    [24]

    Ni Z H, Wang Y Y, Yu T, Shen Z X 2008 Nano Res. 1 273

    [25]

    Yutaka K 1982 J. Phys. C: Solid State Phys. 15 5425

  • [1]

    Geim A K, Novoselov K S 2007 Nature Mater. 6 183

    [2]

    Han T W, He P F 2010 Acta Phys. Sin. 59 3408 (in Chinese) [韩同伟, 贺鹏飞 2010 物理学报 59 3408]

    [3]

    Neto A H C, Guinea F, Peres N M R, Novoselov K S, Geim A K2009 Rev. Mod. Phys. 81 109

    [4]

    Hu H X, Zhang Z H, Liu X H, Qiu M, Ding K H 2009 Acta Phys.Sin. 59 7156 (in Chinese) [胡海鑫, 张振华, 刘新海, 邱明, 丁开和 2010 物理学报 59 7156]

    [5]

    Tan C L, Tan Z B, Ma L, Chen J, Yang F, Qu F M, Liu G T, YangH F, Yang C L, Lü L 2009 Acta Phys. Sin. 58 5726 (in Chinese) [谭长玲, 谭振兵, 马丽, 陈军, 杨帆, 屈凡明, 刘广同, 杨海方, 杨昌黎, 吕力 2009 物理学报 58 5726]

    [6]

    Ruoff R 2008 Nature Nanotech. 3 10

    [7]

    Wu Y Q, Lin Y M, Bol A A, Jenkins K A, Xia F N, Farmer D B,Zhu Y, Avouris P 2011 Nature 472 74

    [8]

    Park N, Hong S, Kim G, Jhi S H 2007 J. Am. Chem. Soc. 1298999

    [9]

    Heo C, Yoo J, Lee S, Jo A, Jung S, Yoo H, Lee Y H, Suh M 2011Biomaterials 32 19

    [10]

    Bonaccorso F, Sun Z, Hasan T, Ferrari A C 2010 Nature Photonics4 611

    [11]

    Loh K P, Bao Q L, Eda G, Chhowalla M 2011 Nature Chemistry2 1015

    [12]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y,Dubonos S V, Grigorieva I V, Firsov 2004 Science 306 666

    [13]

    Stankovich S , Dikin D A, Piner R D, Kohlhass K A, KleinhammesA, Jia Y, Wu Y, Nguyen S T, Ruoff R S 2007 Carbon 45 1558

    [14]

    Berger C, Song Z M, Li X B, Wu X S, Brown N, Naud C, MayouD, Li T, Hass J, Marchenkov A N, Conrad E H, First P N, Heer W A 2006 Science 312 1191

    [15]

    Rummeli M H, Bachmatiuk A, Scott A, Borrnert F, Warner J H,Hoffman V, Lin J H, Cuniberti G, Buchner B 2010 ACS Nano 44206

    [16]

    Wei D C, Liu Y Q, Zhang H L, Huang L P, Wu Bin, Chen J Y, Yu G 2009 J. Am. Chem. Soc. 131 11147

    [17]

    Ding X L, Ding G Q, Xie X M, Huang F Q, Jiang M H 2011Carbon 49 2522

    [18]

    Reina A, Jia X T, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus M S, Kong J 2009 Nano Lett. 9 30

    [19]

    Pan Y, Shi D X, Gao H J 2007 Chin. Phys. 16 3151

    [20]

    Coraus J, N'Diaye A, Engler M, Busse C, Wall D, Buckanie N,Heringdorf F J M, Gastel R, Poelsema B, Michely T 2009 New J.Phys. 11 023006

    [21]

    Li X S, Cai W W, An J H, Kim S, Nah J, Yang D X, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff RS 2009 Science 324 1312

    [22]

    Su C Y, Fu D L, Lu A Y, Liu K K, Xu Y P, Juang Z Y, Li L J 2011 Nanotechnology 22 185309

    [23]

    Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, MauriF, Piscanec S, Jiang D, Novoselov K S, Roth S, Geim A K 2006Phys. Rev. Lett. 97 187401

    [24]

    Ni Z H, Wang Y Y, Yu T, Shen Z X 2008 Nano Res. 1 273

    [25]

    Yutaka K 1982 J. Phys. C: Solid State Phys. 15 5425

  • [1] 郑钦仁, 詹涪至, 折俊艺, 王建宇, 石若立, 孟国栋. 石墨烯的形貌特征对其场发射性能的影响. 物理学报, 2024, 73(8): 086101. doi: 10.7498/aps.73.20231784
    [2] 周海涛, 熊希雅, 罗飞, 罗炳威, 刘大博, 申承民. 原位生长技术制备石墨烯强化铜基复合材料. 物理学报, 2021, 70(8): 086201. doi: 10.7498/aps.70.20201943
    [3] 冯秋菊, 石博, 李昀铮, 王德煜, 高冲, 董增杰, 解金珠, 梁红伟. 单根Sb掺杂ZnO微米线非平衡电桥式气敏传感器的制作与性能. 物理学报, 2020, 69(3): 038102. doi: 10.7498/aps.69.20191530
    [4] 张娜, 刘波, 林黎蔚. He离子辐照对石墨烯微观结构及电学性能的影响. 物理学报, 2020, 69(1): 016101. doi: 10.7498/aps.69.20191344
    [5] 王晓愚, 毕卫红, 崔永兆, 付广伟, 付兴虎, 金娃, 王颖. 基于化学气相沉积方法的石墨烯-光子晶体光纤的制备研究. 物理学报, 2020, 69(19): 194202. doi: 10.7498/aps.69.20200750
    [6] 吴晨晨, 郭相东, 胡海, 杨晓霞, 戴庆. 石墨烯等离激元增强红外光谱. 物理学报, 2019, 68(14): 148103. doi: 10.7498/aps.68.20190903
    [7] 张晓波, 青芳竹, 李雪松. 化学气相沉积石墨烯薄膜的洁净转移. 物理学报, 2019, 68(9): 096801. doi: 10.7498/aps.68.20190279
    [8] 刘贵立, 杨忠华. 变形及电场作用对石墨烯电学特性影响的第一性原理计算. 物理学报, 2018, 67(7): 076301. doi: 10.7498/aps.67.20172491
    [9] 黄乐, 张志勇, 彭练矛. 高性能石墨烯霍尔传感器. 物理学报, 2017, 66(21): 218501. doi: 10.7498/aps.66.218501
    [10] 李浩, 付志兵, 王红斌, 易勇, 黄维, 张继成. 铜基底上双层至多层石墨烯常压化学气相沉积法制备与机理探讨. 物理学报, 2017, 66(5): 058101. doi: 10.7498/aps.66.058101
    [11] 杨慧慧, 高峰, 戴明金, 胡平安. 介电层表面直接生长石墨烯的研究进展. 物理学报, 2017, 66(21): 216804. doi: 10.7498/aps.66.216804
    [12] 禹忠, 党忠, 柯熙政, 崔真. N/B掺杂石墨烯的光学与电学性质. 物理学报, 2016, 65(24): 248103. doi: 10.7498/aps.65.248103
    [13] 邢兰俊, 常永勤, 邵长景, 王琳, 龙毅. Sn掺杂ZnO薄膜的室温气敏性能及其气敏机理. 物理学报, 2016, 65(9): 097302. doi: 10.7498/aps.65.097302
    [14] 王彬, 冯雅辉, 王秋实, 张伟, 张丽娜, 马晋文, 张浩然, 于广辉, 王桂强. 化学气相沉积法制备的石墨烯晶畴的氢气刻蚀. 物理学报, 2016, 65(9): 098101. doi: 10.7498/aps.65.098101
    [15] 韩林芷, 赵占霞, 马忠权. 化学气相沉积法制备大尺寸单晶石墨烯的工艺参数研究. 物理学报, 2014, 63(24): 248103. doi: 10.7498/aps.63.248103
    [16] 王浪, 冯伟, 杨连乔, 张建华. 化学气相沉积法制备石墨烯的铜衬底预处理研究. 物理学报, 2014, 63(17): 176801. doi: 10.7498/aps.63.176801
    [17] 魏晓林, 陈元平, 王如志, 钟建新. 含孔缺陷石墨烯纳米条带的电学特性研究. 物理学报, 2013, 62(5): 057101. doi: 10.7498/aps.62.057101
    [18] 张振江, 胡小会, 孙立涛. 单空位缺陷诱导的扶手椅型石墨烯纳米带电学性能的转变. 物理学报, 2013, 62(17): 177101. doi: 10.7498/aps.62.177101
    [19] 杨发展, 沈丽如, 王世庆, 唐德礼, 金凡亚, 刘海峰. 等离子体增强化学气相沉积法制备含氢类金刚石膜的紫外Raman光谱和X射线光电子能谱研究. 物理学报, 2013, 62(1): 017802. doi: 10.7498/aps.62.017802
    [20] 韩同伟, 贺鹏飞. 石墨烯弛豫性能的分子动力学模拟. 物理学报, 2010, 59(5): 3408-3413. doi: 10.7498/aps.59.3408
计量
  • 文章访问数:  8394
  • PDF下载量:  1555
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-03-28
  • 修回日期:  2011-06-01
  • 刊出日期:  2012-03-15

/

返回文章
返回