-
对非局域自散焦克尔介质中的空间光暗孤子成丝进行了研究. 理论上从非局域非线性理论模型出发, 数值模拟研究了非局域程度和吸收系数对暗孤子成丝的影响. 当入射背景光强一定时, 非局域程度越大成丝起始点越远、成丝数量越少; 而当入射背景光强与临界光强之比一定时, 非局域程度基本不影响成丝起始点以及成丝数量, 且非局域下的成丝数量与局域下一样. 此外, 当入射背景光强一定时, 吸收系数越大成丝数量越少. 实验上通过改变染料溶液的浓度以及背景光斑的椭圆率, 分别研究了样品浓度和背景光斑椭圆率对暗孤子成丝的影响. 当入射背景平均光强一定时, 样品浓度越小成丝数量越少, 背景光斑椭圆率越小成丝数量越少; 而当入射背景平均光强与临界光强之比一定时, 样品浓度基本不影响成丝数量. 在实验中还观察到了光学冲击波现象.
[1] Kivshar Y S, Agrawal G P 2003 Optical Solitons: From Fibers to Photonic Crystals (San Diego: Academic Press)
[2] Snyder A W, Mitchell D J 1997 Science 276 1538
[3] Conti C, Peccianti M, Assanto G 2004 Phys. Rev. Lett. 92 113902
[4] Peccianti M, Brzdakiewicz K A, Assanto G 2002 Opt. Lett. 27 16
[5] Hu W, Zhang T, Guo Q, Xuan L, Lan S 2006 Appl. Phys. Lett. 89 071111
[6] Serak S V, Tabiryan N V, Peccianti M, Assanto G 2006 IEEE Photon. Techn. Lett. 18 1094
[7] Ouyang S G, Guo Q 2007 Phys. Rev. A 76 053833
[8] Hu W, Ouyang S G, Yang P B, Guo Q, Lan S 2008 Phys. Rev. A 77 033842
[9] Rotschild C, Cohen O, Manela O, Segev M 2005 Phys. Rev. Lett. 95 213904
[10] Alfassi B, Rotschild C, Manela O, Segev M, Christodoulides D N 2007 Phys. Rev. Lett. 98 213901
[11] Krolikowski W, Bang O 2000 Phys. Rev. E 63 016610
[12] Dreischuh A, Neshev D N, Petersen D E, Bang O, Krolikowski W 2006 Phys. Rev. Lett. 96 043901
[13] Nikolov N I, Neshev D, Krolikowski W, Bang O, Rasmussen J J, Christiansen P L 2004 Opt. Lett. 29 286
[14] Conti C, Fratalocchi A, Peccianti M, Ruocco G, Trillo S 2009 Phys. Rev. Lett. 102 083902
[15] Zabusky N J, Kruskal M D 1965 Phys. Rev. Lett. 15 240
[16] Kamchatnov A M, Kraenkel R A, Umarov B A 2002 Phys. Rev. E 66 036609
[17] Bettelheim E, Abanov A G, Wiegmann P 2006 Phys. Rev. Lett. 97 246401
[18] Whitman G B 1974 Linear and Nonlinear Waves (New York: Wiley)
[19] Ghofraniha N, Conti C, Ruocco G, Trillo S 2007 Phys. Rev. Lett. 99 043903
[20] Zhou L H, Gao X H, Yang Z J, Lu D Q, Guo Q, Cao W W, Hu W 2011 Acta Phys. Sin. 60 044208 (in Chinese) [周罗红, 高星辉, 杨振军, 陆大全, 郭旗, 曹伟文, 胡巍 2011 物理学报 60 044208]
[21] Krolikowski W, Bang O, Rasmussen J J, Wyller J 2001 Phys. Rev. E 64 016612
[22] Ouyang S G, Guo Q 2009 Opt. Express 17 5170
-
[1] Kivshar Y S, Agrawal G P 2003 Optical Solitons: From Fibers to Photonic Crystals (San Diego: Academic Press)
[2] Snyder A W, Mitchell D J 1997 Science 276 1538
[3] Conti C, Peccianti M, Assanto G 2004 Phys. Rev. Lett. 92 113902
[4] Peccianti M, Brzdakiewicz K A, Assanto G 2002 Opt. Lett. 27 16
[5] Hu W, Zhang T, Guo Q, Xuan L, Lan S 2006 Appl. Phys. Lett. 89 071111
[6] Serak S V, Tabiryan N V, Peccianti M, Assanto G 2006 IEEE Photon. Techn. Lett. 18 1094
[7] Ouyang S G, Guo Q 2007 Phys. Rev. A 76 053833
[8] Hu W, Ouyang S G, Yang P B, Guo Q, Lan S 2008 Phys. Rev. A 77 033842
[9] Rotschild C, Cohen O, Manela O, Segev M 2005 Phys. Rev. Lett. 95 213904
[10] Alfassi B, Rotschild C, Manela O, Segev M, Christodoulides D N 2007 Phys. Rev. Lett. 98 213901
[11] Krolikowski W, Bang O 2000 Phys. Rev. E 63 016610
[12] Dreischuh A, Neshev D N, Petersen D E, Bang O, Krolikowski W 2006 Phys. Rev. Lett. 96 043901
[13] Nikolov N I, Neshev D, Krolikowski W, Bang O, Rasmussen J J, Christiansen P L 2004 Opt. Lett. 29 286
[14] Conti C, Fratalocchi A, Peccianti M, Ruocco G, Trillo S 2009 Phys. Rev. Lett. 102 083902
[15] Zabusky N J, Kruskal M D 1965 Phys. Rev. Lett. 15 240
[16] Kamchatnov A M, Kraenkel R A, Umarov B A 2002 Phys. Rev. E 66 036609
[17] Bettelheim E, Abanov A G, Wiegmann P 2006 Phys. Rev. Lett. 97 246401
[18] Whitman G B 1974 Linear and Nonlinear Waves (New York: Wiley)
[19] Ghofraniha N, Conti C, Ruocco G, Trillo S 2007 Phys. Rev. Lett. 99 043903
[20] Zhou L H, Gao X H, Yang Z J, Lu D Q, Guo Q, Cao W W, Hu W 2011 Acta Phys. Sin. 60 044208 (in Chinese) [周罗红, 高星辉, 杨振军, 陆大全, 郭旗, 曹伟文, 胡巍 2011 物理学报 60 044208]
[21] Krolikowski W, Bang O, Rasmussen J J, Wyller J 2001 Phys. Rev. E 64 016612
[22] Ouyang S G, Guo Q 2009 Opt. Express 17 5170
引用本文: |
Citation: |
计量
- 文章访问数: 2476
- PDF下载量: 797
- 被引次数: 0