搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

掺镱光纤激光器自脉冲与自脉冲内的自锁模研究

韩旭 冯国英 武传龙 姜东升 周寿桓

掺镱光纤激光器自脉冲与自脉冲内的自锁模研究

韩旭, 冯国英, 武传龙, 姜东升, 周寿桓
PDF
导出引用
导出核心图
  • 采用单端连续抽运方式, 对自由运转的双包层掺镱光纤激光器的输出特性进行了详细的实验研究. 实验中不但观察到了自脉冲, 而且首次在自由运转的光纤激光器中观察到自锁模现象, 对它们产生的物理机理进行了相应的理论分析. 分析表明: 增益光纤的弱(未) 抽运部分对信号光的吸收导致光纤激光器内自脉冲的出现, 轴向模之间的拍频和自相位调制导致自锁模现象的出现, 而受激拉曼散射、 受激布里渊散射等非线性效应使它们进一步增强. 当抽运光功率略高于阈值时, 自脉冲宽度比较宽, 随抽运光功率增加自脉冲的脉宽变窄; 自脉冲包络面内的自锁模脉冲的宽度随抽运光功率增加也变窄, 进一步增加抽运光功率, 自脉冲和自脉冲包络面内的自锁模现象消失. 实验测得自锁模脉冲的间隔为224 ns, 最大(小) 自锁模脉冲的半高全宽约为35.0 ns (6.3 ns); 测得信号光的中心波长为1090 nm, 谱线半高全宽的最大(小) 值约为7.05 nm (2.01 nm).
    • 基金项目: 国家自然科学基金(批准号: 60890200, 10976017, 10876022) 和固体激光技术国家重点实验室基金资助的课题.
    [1]

    Myslinski P, Chrostowski J, Koningstein J A K, Simpson J R 1993 Appl. Opt. 32 286

    [2]

    Rangel-Rojo R, Mohebi M 1997 Opt. Commun. 137 98

    [3]

    Hideur A, Chartier T, Õzkul C, Sanchez F 2000 Opt. Commun. 186 311

    [4]

    Jackson S 2002 Electron. Lett. 38 1640

    [5]

    Leblond H, Salhi M, Hideur A, Chartier T, Brunel M, Sanchez F 2002 Phys. Rev. A 65 63811

    [6]

    Wang Y, Martinez-Rios A, Po H 2003 Opt. Commun. 224 113

    [7]

    Brunet F, Taillon Y, Galarneau P, LaRochelle S 2005 J. Lightwave Technol. 23 2131

    [8]

    Wang Y G, Ma X Y, Fu S G, Fan W D, Li Q, Yuan S Z, Dong X Y, Song Y R, Zhang Z G 2004 Acta Phys. Sin. 53 1810 (in Chinese) [王勇刚, 马骁宇, 付圣贵, 范万德, 李 强, 袁树忠, 董孝义, 宋晏蓉, 张志刚 2004 物理学报 53 1810]

    [9]

    Li J, Ueda K, Musha M, Shirakawa A, Zhong L 2006 Appl. Phys. B 85 565

    [10]

    Upadhyaya B, Chakravarty U, Kuruvilla A, Oak S, Shenoy M, Thyagarajan K 2010 Opt. Commun. 283 2206

    [11]

    Song Y J, Hu M L, Liu Q W, Li J Y, Chen W, Chai L, Wang Q Y 2008 Acta Phys. Sin. 57 5045 (in Chinese) [宋有建, 胡明列, 刘庆文, 李进延, 陈 伟, 柴 路, 王清月 2008 物理学报 57 5045]

    [12]

    Upadhyaya B, Kuruvilla A, Chakravarty U, Shenoy M, Thyagarajan K, Oak S 2010 Appl. Opt. 49 2316

    [13]

    Jeong Y, Sahu J, Payne D, Nilsson J 2004 Opt. Express 12 6088

    [14]

    Lou Q H, He B, Xue Y H, Zhou J, Dong J X, Wei Y R, Wang W, Li Z, Qi Y F, Du S T 2009 Chin. J. Lasers 36 1277 (in Chinese) [楼祺洪, 何兵, 薛宇豪, 周军, 董景星, 魏运荣, 王炜, 李 震, 漆云凤, 杜松涛 2009 中国激光 36 1277]

    [15]

    Jeong Y C, Boyland A J, Sahu J K, Chung S H, Nilsson J, Payne D N 2009 J. Opt. Soc. Korea 13 416

    [16]

    Tsang Y, King T, Ko D, Lee J 2006 Opt. Commun. 259 236

    [17]

    Colin S, Contesse E, Boudec P, Stephan G, Sanchez F 1996 Opt. Lett. 21 1987

    [18]

    Sanchez F, LeBoudec P, François P L, Stephan G 1993 Phys. Rev. A 48 2220

    [19]

    Chernikov S, Zhu Y, Taylor J, Gapontsev V 1997 Opt. Lett. 22 298

    [20]

    Salhi M, Hideur A, Chartier T, Brunel M, Martel G, Ozkul C, Sanchez F 2002 Opt. Lett. 27 1294

    [21]

    Kir'yanov A, Barmenkov Y 2006 Laser Phys. Lett. 3 498

    [22]

    MartÍnez-Rios A, Torres-Gómez I, Anzueto-Sanchez G, Selvas-Aguilar R 2008 Opt. Commun. 281 663

    [23]

    Upadhyaya B N, Chakravarty U, Kuruvilla A, Nath A K, Shenoy M R, Thyagarajan K 2008 Opt. Commun. 281 146

    [24]

    Upadhyaya B, Chakravarty U, Kuruvilla A, Thyagarajan K, Shenoy M, Oak S 2007 Opt. Express 15 11576

    [25]

    Jun C S, Kim B Y 2011 Opt. Express 19 6290

    [26]

    Agrawal G P 2002 Fiber-Optic Communication Systems (3rd Ed.) (New York: John Wiley and Sons Inc.) pp59--62

    [27]

    Dawson J W, Messerly M J, Beach R J, Shverdin M Y, Stappaerts E A, Sridharan A K, Pax P H, Heebner J E, Siders C W, Barty C 2008 Opt. Express 16 13240

  • [1]

    Myslinski P, Chrostowski J, Koningstein J A K, Simpson J R 1993 Appl. Opt. 32 286

    [2]

    Rangel-Rojo R, Mohebi M 1997 Opt. Commun. 137 98

    [3]

    Hideur A, Chartier T, Õzkul C, Sanchez F 2000 Opt. Commun. 186 311

    [4]

    Jackson S 2002 Electron. Lett. 38 1640

    [5]

    Leblond H, Salhi M, Hideur A, Chartier T, Brunel M, Sanchez F 2002 Phys. Rev. A 65 63811

    [6]

    Wang Y, Martinez-Rios A, Po H 2003 Opt. Commun. 224 113

    [7]

    Brunet F, Taillon Y, Galarneau P, LaRochelle S 2005 J. Lightwave Technol. 23 2131

    [8]

    Wang Y G, Ma X Y, Fu S G, Fan W D, Li Q, Yuan S Z, Dong X Y, Song Y R, Zhang Z G 2004 Acta Phys. Sin. 53 1810 (in Chinese) [王勇刚, 马骁宇, 付圣贵, 范万德, 李 强, 袁树忠, 董孝义, 宋晏蓉, 张志刚 2004 物理学报 53 1810]

    [9]

    Li J, Ueda K, Musha M, Shirakawa A, Zhong L 2006 Appl. Phys. B 85 565

    [10]

    Upadhyaya B, Chakravarty U, Kuruvilla A, Oak S, Shenoy M, Thyagarajan K 2010 Opt. Commun. 283 2206

    [11]

    Song Y J, Hu M L, Liu Q W, Li J Y, Chen W, Chai L, Wang Q Y 2008 Acta Phys. Sin. 57 5045 (in Chinese) [宋有建, 胡明列, 刘庆文, 李进延, 陈 伟, 柴 路, 王清月 2008 物理学报 57 5045]

    [12]

    Upadhyaya B, Kuruvilla A, Chakravarty U, Shenoy M, Thyagarajan K, Oak S 2010 Appl. Opt. 49 2316

    [13]

    Jeong Y, Sahu J, Payne D, Nilsson J 2004 Opt. Express 12 6088

    [14]

    Lou Q H, He B, Xue Y H, Zhou J, Dong J X, Wei Y R, Wang W, Li Z, Qi Y F, Du S T 2009 Chin. J. Lasers 36 1277 (in Chinese) [楼祺洪, 何兵, 薛宇豪, 周军, 董景星, 魏运荣, 王炜, 李 震, 漆云凤, 杜松涛 2009 中国激光 36 1277]

    [15]

    Jeong Y C, Boyland A J, Sahu J K, Chung S H, Nilsson J, Payne D N 2009 J. Opt. Soc. Korea 13 416

    [16]

    Tsang Y, King T, Ko D, Lee J 2006 Opt. Commun. 259 236

    [17]

    Colin S, Contesse E, Boudec P, Stephan G, Sanchez F 1996 Opt. Lett. 21 1987

    [18]

    Sanchez F, LeBoudec P, François P L, Stephan G 1993 Phys. Rev. A 48 2220

    [19]

    Chernikov S, Zhu Y, Taylor J, Gapontsev V 1997 Opt. Lett. 22 298

    [20]

    Salhi M, Hideur A, Chartier T, Brunel M, Martel G, Ozkul C, Sanchez F 2002 Opt. Lett. 27 1294

    [21]

    Kir'yanov A, Barmenkov Y 2006 Laser Phys. Lett. 3 498

    [22]

    MartÍnez-Rios A, Torres-Gómez I, Anzueto-Sanchez G, Selvas-Aguilar R 2008 Opt. Commun. 281 663

    [23]

    Upadhyaya B N, Chakravarty U, Kuruvilla A, Nath A K, Shenoy M R, Thyagarajan K 2008 Opt. Commun. 281 146

    [24]

    Upadhyaya B, Chakravarty U, Kuruvilla A, Thyagarajan K, Shenoy M, Oak S 2007 Opt. Express 15 11576

    [25]

    Jun C S, Kim B Y 2011 Opt. Express 19 6290

    [26]

    Agrawal G P 2002 Fiber-Optic Communication Systems (3rd Ed.) (New York: John Wiley and Sons Inc.) pp59--62

    [27]

    Dawson J W, Messerly M J, Beach R J, Shverdin M Y, Stappaerts E A, Sridharan A K, Pax P H, Heebner J E, Siders C W, Barty C 2008 Opt. Express 16 13240

  • [1] 王瑜浩, 武保剑, 郭飚, 文峰, 邱昆. 基于非线性光纤环形镜的少模脉冲幅度调制再生器研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191858
    [2] 周峰, 蔡宇, 邹德峰, 胡丁桐, 张亚静, 宋有建, 胡明列. 钛宝石飞秒激光器中孤子分子的内部动态探测. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191989
    [3] 张继业, 张建伟, 曾玉刚, 张俊, 宁永强, 张星, 秦莉, 刘云, 王立军. 高功率垂直外腔面发射半导体激光器增益设计及制备. 物理学报, 2020, 69(5): 054204. doi: 10.7498/aps.69.20191787
    [4] 胡耀华, 刘艳, 穆鸽, 秦齐, 谭中伟, 王目光, 延凤平. 基于多模光纤散斑的压缩感知在光学图像加密中的应用. 物理学报, 2020, 69(3): 034203. doi: 10.7498/aps.69.20191143
    [5] 刘婉馨, 陈瑞, 刘永杰, 王俊峰, 韩小涛, 杨明. 脉冲强磁场下的电极化测量系统. 物理学报, 2020, 69(5): 057502. doi: 10.7498/aps.69.20191520
    [6] 周瑜, 操礼阳, 马晓萍, 邓丽丽, 辛煜. 脉冲射频容性耦合氩等离子体的发射探针诊断. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191864
    [7] 朱存远, 李朝刚, 方泉, 汪茂胜, 彭雪城, 黄万霞. 用久期微绕理论将弹簧振子模型退化为耦合模理论. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191505
    [8] 赵超樱, 范钰婷, 孟义朝, 郭奇志, 谭维翰. 圆柱型光纤螺线圈轨道角动量模式. 物理学报, 2020, 69(5): 054207. doi: 10.7498/aps.69.20190997
    [9] 李闯, 李伟伟, 蔡理, 谢丹, 刘保军, 向兰, 杨晓阔, 董丹娜, 刘嘉豪, 陈亚博. 基于银纳米线电极-rGO敏感材料的柔性NO2气体传感器. 物理学报, 2020, 69(5): 058101. doi: 10.7498/aps.69.20191390
    [10] 汪静丽, 陈子玉, 陈鹤鸣. 基于Si3N4/SiNx/Si3N4三明治结构的偏振无关1 × 2多模干涉型解复用器的设计. 物理学报, 2020, 69(5): 054206. doi: 10.7498/aps.69.20191449
    [11] 罗菊, 韩敬华. 激光等离子体去除微纳颗粒的热力学研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191933
    [12] 刘家合, 鲁佳哲, 雷俊杰, 高勋, 林景全. 气体压强对纳秒激光诱导空气等离子体特性的影响. 物理学报, 2020, 69(5): 057401. doi: 10.7498/aps.69.20191540
    [13] 刘厚通, 毛敏娟. 一种无需定标的地基激光雷达气溶胶消光系数精确反演方法. 物理学报, 2019, 68(7): 074205. doi: 10.7498/aps.68.20181825
    [14] 周旭聪, 石尚, 李飞, 孟庆田, 王兵兵. 利用双色激光场下域上电离谱鉴别H32+ 两种不同分子构型. 物理学报, 2020, (): . doi: 10.7498/aps.69.20200013
    [15] 张战刚, 雷志锋, 童腾, 李晓辉, 王松林, 梁天骄, 习凯, 彭超, 何玉娟, 黄云, 恩云飞. 14 nm FinFET和65 nm平面工艺静态随机存取存储器中子单粒子翻转对比. 物理学报, 2020, 69(5): 056101. doi: 10.7498/aps.69.20191209
  • 引用本文:
    Citation:
计量
  • 文章访问数:  2354
  • PDF下载量:  848
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-07-16
  • 修回日期:  2012-06-05
  • 刊出日期:  2012-06-05

掺镱光纤激光器自脉冲与自脉冲内的自锁模研究

  • 1. 四川大学电子信息学院, 成都 610065;
  • 2. 河南理工大学物理化学学院, 焦作 454000;
  • 3. 华北光电技术研究所, 北京 100015
    基金项目: 

    国家自然科学基金(批准号: 60890200, 10976017, 10876022) 和固体激光技术国家重点实验室基金资助的课题.

摘要: 采用单端连续抽运方式, 对自由运转的双包层掺镱光纤激光器的输出特性进行了详细的实验研究. 实验中不但观察到了自脉冲, 而且首次在自由运转的光纤激光器中观察到自锁模现象, 对它们产生的物理机理进行了相应的理论分析. 分析表明: 增益光纤的弱(未) 抽运部分对信号光的吸收导致光纤激光器内自脉冲的出现, 轴向模之间的拍频和自相位调制导致自锁模现象的出现, 而受激拉曼散射、 受激布里渊散射等非线性效应使它们进一步增强. 当抽运光功率略高于阈值时, 自脉冲宽度比较宽, 随抽运光功率增加自脉冲的脉宽变窄; 自脉冲包络面内的自锁模脉冲的宽度随抽运光功率增加也变窄, 进一步增加抽运光功率, 自脉冲和自脉冲包络面内的自锁模现象消失. 实验测得自锁模脉冲的间隔为224 ns, 最大(小) 自锁模脉冲的半高全宽约为35.0 ns (6.3 ns); 测得信号光的中心波长为1090 nm, 谱线半高全宽的最大(小) 值约为7.05 nm (2.01 nm).

English Abstract

参考文献 (27)

目录

    /

    返回文章
    返回