搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

定向倾斜枝晶生长规律及竞争行为的相场法研究

王雅琴 王锦程 李俊杰

引用本文:
Citation:

定向倾斜枝晶生长规律及竞争行为的相场法研究

王雅琴, 王锦程, 李俊杰

Phase field modeling of the growth and competition behavior of tilted dendrites in directional solidification

Wang Ya-Qin, Wang Jin-Cheng, Li Jun-Jie
PDF
导出引用
  • 采用多相场模型对定向凝固过程中倾斜枝晶生长进行了研究, 模拟了单一取向枝晶列的演化规律及不同取向枝晶列汇聚生长竞争淘汰行为. 结果表明, 枝晶尖端过冷度随倾斜角度的增大而增大, 即相同条件下倾斜枝晶尖端位置总是低于非倾斜枝晶; 汇聚生长时择优取向枝晶总是阻挡非择优取向枝晶, 但在抽拉速度较低时, 由于溶质扩散场的相互重叠, 晶界处择优取向枝晶的生长受到相邻非择优枝晶的影响而延缓, 这可能导致非择优取向枝晶淘汰择优取向枝晶.
    The multi-phase field model is employed to simulate the growth of tilted dendrites during directional solidification. In this simulation, the evolution of a single oriented dendritic array and the overgrowth behavior between two converging grains with different orientations are studied. The simulated results show that the dendritic tip undercooling increases with the tilt angle, which means that the tip position of tilted dendrite is always lower than that of the non-tilted in the same condition. The favorably oriented grain always blocks the unfavorably oriented one in the case of converging growth. However, when the pulling velocity is low, the growth of the preferred crystalline orientation dendrites at the grain boundary is lagged by the immediate unfavorably ones because of the solutal interaction, which may result in the fact that the unfavorably oriented grain overgrows the favorably oriented one.
    • 基金项目: 国家自然科学基金(批准号: 51071128, 51101124)、国家重点基础研究发展计划(批准号: 2011CB610401)、西北工业大学基础研究基金(批准号: JC201006)和凝固技术国家重点实验室自主研究基金(批准号: 67-QP-2011)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51071128, 51101124), the National Basic Research Program of China (Grant No. 2011CB610401), the Fundamental Research Fund of Northwestern Polytechnical University, China (Grant No. JC201006), and the Free Research Fund of State Key Laboratory of Solidification Processing, China (Grant No. 67-QP-2011).
    [1]

    Tiller W A, Jackson K A, Rutter J W 1953 Acta Metall. 1 428

    [2]

    Mullins W W, Sekerka R K 1964 J. Appl. Phys. 35 444

    [3]

    Warren J A, Langer J S 1993 Phys. Rev. E 47 2702

    [4]

    Deschamps J, Georgelin M, Pocheau A 2008 Phys. Rev. E 78 011605

    [5]

    Akamatsu S, Ihle T 1997 Phys. Rev. E 56 4479

    [6]

    Zhou Y Z, Volek A, Green N R 2008 Acta Mater. 56 2631

    [7]

    Zhou Y Z, Green N R 2008 Superalloys Champion, USA, September 14--18, 2008 p317

    [8]

    Zhou Y Z, Jin T, Sun X F 2010 Acta Metall. Sin. 46 1327 (in Chinese) [周亦胄, 金涛, 孙晓峰 2010 金属学报 46 1327]

    [9]

    Okada T, Saito Y 1996 Phys. Rev. E 54 650

    [10]

    Pocheau A, Deschamps J, Georgelin M 2007 JOM 59 71

    [11]

    Pocheau A, Deschamps J, Georgelin M 2010 Phys. Rev. E 81 1539

    [12]

    Yu Y M, Yang G C, Zhao D W, Lü Y L 2001 Acta Phys. Sin. 50 2423 (in Chinese) [于艳梅, 杨根仓, 赵达文, 吕衣礼 2001 物理学报 50 2423]

    [13]

    Karma A, Sarkissian A 1996 Metall. Mater. Trans. A 27 635

    [14]

    Zhu Y C, Wang J C, Yang G C, Yang Y J 2007 Acta Phys. Sin. 56 5542 (in Chinese) [朱耀产, 王锦程, 杨根仓, 杨玉娟 2007 物理学报 56 5542]

    [15]

    Folch R, Plapp M 2003 Phys. Rev. E 68 010602

    [16]

    Li J J, Wang J C, Xu Q, Yang G C 2007 Acta Phys. Sin. 56 1514 (in Chinese) [李俊杰, 王锦程, 许泉, 杨根仓 2007 物理学报 56 1514]

    [17]

    Steinbach I, Pezzolla F, Nestler B 1996 Phys. D 94 135

    [18]

    Kim S G, Kim W T, Suzuki T 2004 J. Cryst. Growth 261 135

    [19]

    Yang X L, Dong H B, Wang W 2004 Mater. Sci. Eng. A 386 129

    [20]

    Walton D, Chalmers B 1959 Trans. Metall. Soc. AIME 215 447

    [21]

    Burden M H, Hunt J D 1974 J. Cryst. Growth 22 99

    [22]

    Huang W, Geng X, Zhou Y 1993 J. Cryst. Growth 134 105

    [23]

    Trivedi R, Shen Y, Liu S 2003 Metall. Mater. Trans. A 34 395

    [24]

    Souza N D, Aradakani M G, Wagner A 2002 J. Mater. Sci. 27 481

  • [1]

    Tiller W A, Jackson K A, Rutter J W 1953 Acta Metall. 1 428

    [2]

    Mullins W W, Sekerka R K 1964 J. Appl. Phys. 35 444

    [3]

    Warren J A, Langer J S 1993 Phys. Rev. E 47 2702

    [4]

    Deschamps J, Georgelin M, Pocheau A 2008 Phys. Rev. E 78 011605

    [5]

    Akamatsu S, Ihle T 1997 Phys. Rev. E 56 4479

    [6]

    Zhou Y Z, Volek A, Green N R 2008 Acta Mater. 56 2631

    [7]

    Zhou Y Z, Green N R 2008 Superalloys Champion, USA, September 14--18, 2008 p317

    [8]

    Zhou Y Z, Jin T, Sun X F 2010 Acta Metall. Sin. 46 1327 (in Chinese) [周亦胄, 金涛, 孙晓峰 2010 金属学报 46 1327]

    [9]

    Okada T, Saito Y 1996 Phys. Rev. E 54 650

    [10]

    Pocheau A, Deschamps J, Georgelin M 2007 JOM 59 71

    [11]

    Pocheau A, Deschamps J, Georgelin M 2010 Phys. Rev. E 81 1539

    [12]

    Yu Y M, Yang G C, Zhao D W, Lü Y L 2001 Acta Phys. Sin. 50 2423 (in Chinese) [于艳梅, 杨根仓, 赵达文, 吕衣礼 2001 物理学报 50 2423]

    [13]

    Karma A, Sarkissian A 1996 Metall. Mater. Trans. A 27 635

    [14]

    Zhu Y C, Wang J C, Yang G C, Yang Y J 2007 Acta Phys. Sin. 56 5542 (in Chinese) [朱耀产, 王锦程, 杨根仓, 杨玉娟 2007 物理学报 56 5542]

    [15]

    Folch R, Plapp M 2003 Phys. Rev. E 68 010602

    [16]

    Li J J, Wang J C, Xu Q, Yang G C 2007 Acta Phys. Sin. 56 1514 (in Chinese) [李俊杰, 王锦程, 许泉, 杨根仓 2007 物理学报 56 1514]

    [17]

    Steinbach I, Pezzolla F, Nestler B 1996 Phys. D 94 135

    [18]

    Kim S G, Kim W T, Suzuki T 2004 J. Cryst. Growth 261 135

    [19]

    Yang X L, Dong H B, Wang W 2004 Mater. Sci. Eng. A 386 129

    [20]

    Walton D, Chalmers B 1959 Trans. Metall. Soc. AIME 215 447

    [21]

    Burden M H, Hunt J D 1974 J. Cryst. Growth 22 99

    [22]

    Huang W, Geng X, Zhou Y 1993 J. Cryst. Growth 134 105

    [23]

    Trivedi R, Shen Y, Liu S 2003 Metall. Mater. Trans. A 34 395

    [24]

    Souza N D, Aradakani M G, Wagner A 2002 J. Mater. Sci. 27 481

  • [1] 楚硕, 郭春文, 王志军, 李俊杰, 王锦程. 浓度相关的扩散系数对定向凝固枝晶生长的影响. 物理学报, 2019, 68(16): 166401. doi: 10.7498/aps.68.20190603
    [2] 徐小花, 陈明文, 王自东. 各向异性表面张力对定向凝固中共晶生长形态稳定性的影响. 物理学报, 2018, 67(11): 118103. doi: 10.7498/aps.67.20180186
    [3] 蒋晗, 陈明文, 王涛, 王自东. 各向异性界面动力学与各向异性表面张力的相互作用对定向凝固过程中深胞晶生长的影响. 物理学报, 2017, 66(10): 106801. doi: 10.7498/aps.66.106801
    [4] 康永生, 赵宇宏, 侯华, 靳玉春, 陈利文. 相场法模拟Fe-C合金定向凝固的液相通道. 物理学报, 2016, 65(18): 188102. doi: 10.7498/aps.65.188102
    [5] 郭春文, 李俊杰, 马渊, 王锦程. 定向凝固过程中枝晶侧向分枝生长行为与强制调控规律. 物理学报, 2015, 64(14): 148101. doi: 10.7498/aps.64.148101
    [6] 陈瑞, 许庆彦, 柳百成. 基于元胞自动机方法的定向凝固枝晶竞争生长数值模拟. 物理学报, 2014, 63(18): 188102. doi: 10.7498/aps.63.188102
    [7] 陈明文, 陈弈臣, 张文龙, 刘秀敏, 王自东. 各向异性表面张力对定向凝固中深胞晶生长的影响. 物理学报, 2014, 63(3): 038101. doi: 10.7498/aps.63.038101
    [8] 叶盈, 周旺民. 生长方向对量子点应变与应变弛豫的影响. 物理学报, 2013, 62(5): 058105. doi: 10.7498/aps.62.058105
    [9] 王贤斌, 林鑫, 王理林, 白贝贝, 王猛, 黄卫东. 晶体取向对定向凝固枝晶生长的影响. 物理学报, 2013, 62(10): 108103. doi: 10.7498/aps.62.108103
    [10] 张宪刚, 宗亚平, 王明涛, 吴艳. 晶粒生长演变相场法模拟界面表达的物理模型. 物理学报, 2011, 60(6): 068201. doi: 10.7498/aps.60.068201
    [11] 王明光, 赵宇宏, 任娟娜, 穆彦青, 王伟, 杨伟明, 李爱红, 葛洪浩, 侯华. 相场法模拟NiCu合金非等温凝固枝晶生长. 物理学报, 2011, 60(4): 040507. doi: 10.7498/aps.60.040507
    [12] 龙文元, 吕冬兰, 夏春, 潘美满, 蔡启舟, 陈立亮. 强迫对流影响二元合金非等温凝固枝晶生长的相场法模拟. 物理学报, 2009, 58(11): 7802-7808. doi: 10.7498/aps.58.7802
    [13] 陈玉娟, 陈长乐. 相场法模拟对流速度对上游枝晶生长的影响. 物理学报, 2008, 57(7): 4585-4589. doi: 10.7498/aps.57.4585
    [14] 李俊杰, 王锦程, 许 泉, 杨根仓. 外来夹杂物颗粒对枝晶生长形态影响的相场法研究. 物理学报, 2007, 56(3): 1514-1519. doi: 10.7498/aps.56.1514
    [15] 路 阳, 王 帆, 朱昌盛, 王智平. 等温凝固多晶粒生长相场法模拟. 物理学报, 2006, 55(2): 780-785. doi: 10.7498/aps.55.780
    [16] 龙文元, 蔡启舟, 魏伯康, 陈立亮. 相场法模拟多元合金过冷熔体中的枝晶生长. 物理学报, 2006, 55(3): 1341-1345. doi: 10.7498/aps.55.1341
    [17] 龙文元, 蔡启舟, 陈立亮, 魏伯康. 二元合金等温凝固过程的相场模型. 物理学报, 2005, 54(1): 256-262. doi: 10.7498/aps.54.256
    [18] 杨 弘, 张清光, 陈 民. 热扰动对过冷熔体中二次枝晶生长影响的相场法模拟. 物理学报, 2005, 54(8): 3740-3744. doi: 10.7498/aps.54.3740
    [19] 李梅娥, 杨根仓, 周尧和. 二元合金高速定向凝固过程的相场法数值模拟. 物理学报, 2005, 54(1): 454-459. doi: 10.7498/aps.54.454
    [20] 于艳梅, 杨根仓, 赵达文, 吕衣礼, A. KARMA, C. BECKERMANN. 过冷熔体中枝晶生长的相场法数值模拟. 物理学报, 2001, 50(12): 2423-2428. doi: 10.7498/aps.50.2423
计量
  • 文章访问数:  6376
  • PDF下载量:  543
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-09-14
  • 修回日期:  2012-06-05
  • 刊出日期:  2012-06-05

/

返回文章
返回