搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

偏置电压对磁致伸缩/压电层合换能结构磁电性能影响

李平 黄娴 文玉梅

偏置电压对磁致伸缩/压电层合换能结构磁电性能影响

李平, 黄娴, 文玉梅
PDF
导出引用
导出核心图
  • 分析和测试了偏置电压调整时PZT5/Terfenol-D/PZT8层合换能结构磁电性能. 提出了一种磁致伸缩/压电层合磁电换能结构的一阶谐振频率控制方法. 通过改变压电驱动层的直流电压对磁电层合结构的预应变进行改变, 从而调整谐振频率. 分析偏置电压、 应变、 弹性模量、 谐振频率和谐振磁电电压系数之间关系. 分析表明: 在较小应变情况下, 控制电压几乎可以线性调节谐振频率, 而层合结构谐振磁电电压系数几乎与偏置电压无关. 实验研究验证: 理论与实验结果较好吻合. 在-170 V+170 V的偏置电压时, 谐振频率可以几乎线性调整. 最大频率调整量达到1 kHz, 偏置电压对一阶纵振频率的控制率达到: 2.94 Hz/V. 在偏置磁场为0225 Oe时, 谐振频率调整量与偏置磁场无关. 偏置磁场会改变谐振磁电电压系数, 在大于178 Oe静态磁场偏置时, 磁电电压系数最大, 达到1.65 V/Oe.
    • 基金项目: 国家自然科学基金(批准号: 50830202, 61071042)资助的课题.
    [1]

    Ryu J, Caraza A V, Uchino K 2001 J. Appl. Phys. 40 4948

    [2]

    Zhang H, Yang J F, Fang L, Yang W M 2003 Materials Review 17 64 (in Chinese) [张辉, 杨俊, 方亮, 杨卫明 2003 材料导报 17 64]

    [3]

    Dong S X, Li J F, Viehland D 2003 IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 50 1253

    [4]

    Dong S X, Li J F, Viehland D 2004 J. Appl. Phys. 95 2625

    [5]

    Dong S X, Zhai J Y, Wang N G, Bai F M, Li J F, Viehland D 2005 Appl. Phys. Lett. 87 222504

    [6]

    Li P, Wen Y M, Bian L X 2007 Appl. Phys. Lett. 90 022503

    [7]

    Li P, Wen Y M, Liu P G, Li X S, Jia C B 2010 Sensors and Actuators A 151 100

    [8]

    Li P, Wen Y M, Jia C B, Li X S 2011 IEEE Trans. on Industrial Electronics 58 2944

    [9]

    Li P, Wen Y M, Jia C B, Li X S 2011 Journal of Magnetics 16 1

    [10]

    Yang W W, Wen Y M, Li P, Bian L X 2009 Acta Phys. Sin. 58 546 (in Chinese) [杨伟伟, 文玉梅, 李平, 卞雷祥 2009 物理学报 58 546]

    [11]

    Chen L, Li P, Wen Y M, Wang D 2011 Journal of Alloys and Compounds 509 4811

    [12]

    Guo S S, Lu S G, Xu Z, Zhao X Z, Or S W 2006 Appl. Phys. Lett. 88 182906

    [13]

    Wang Y J, Or S W, Chan H L W, Zhao X Y, Luo H S 2008 Appl. Phys. Lett. 92 123510

    [14]

    Srinivasan G, Rasmussen E T, Hayes R 2003 Phys. Rev. B 67 14418

    [15]

    Srinivasan G, Rasmussen E T, Bush A A 2004 Appl. Phys. Lett. A 78 721

    [16]

    Dong S X, Cheng J R, Li J F, Viehland D 2003 Appl. Phys. Lett. 83 4812

    [17]

    Yang F, Wen Y M, Li P, Zheng M, Bian L X 2008 Sensors and Actuators A 141 129

    [18]

    Yu H, Zeng M, Wang Y, Wan J G, Liu J M 2005 Appl. Phys. Lett. 86 32508

    [19]

    Bi K, Wang Y G, Wu W 2011 Sensors and Actuators A 166 48

    [20]

    Zhai J Y, Xing Z P, Dong S X, Li J F, Viehland D 2006 Appl. Phys. Lett. 88 062510

    [21]

    Dong S X, Zhai, J Y, Li J F, Viehland D 2006 Appl. Phys. Lett. 88 082907

    [22]

    Yang C H, Wen Y M, Li P, Bian L X 2008 Acta Phys. Sin. 57 7292 (in Chinese) [阳昌海, 文玉梅, 李平, 卞雷祥 2008 物理学报 57 7292]

    [23]

    Jiles D C 1992 IEEE Trans. Magn. 28 2602

    [24]

    Shi Z, Ma J, Lin Y, Nan C W 2007 J. Appl. Phys. 101 043902

    [25]

    Jia Y H, Tan J B 1999 China Mechanical Engineering 11 1213 (in Chinese) [贾宇辉, 谭久彬 1999 中国机械工程 11 1213]

    [26]

    Zhang Y F, Wen Y M, Li P, Bian L X 2009 Acta Phys. Sin. 58 546 (in Chinese) [张延芳, 文玉梅, 李平,卞雷祥 2009 物理学报 58 546]

    [27]

    Li D M, Shun B Y, Dong W J, Zhang H L 2003 China Mechanical Engineering 14 1498 (in Chinese) [李东明, 孙宝元, 董维杰, 张化岚 2003 中国机械工程 14 1498]

    [28]

    Ristic V M 1988 Acoustic Device Principle (Publishing House of Electronics Industry) p5 (in Chinese) [里斯蒂克 V M 1988 声学器件原理 (电子工业出版社) 第5页]

    [29]

    Wan J G, Li Z Y, Wang Y, Zeng M, Wang G H, Liu J M 2005 Appl. Phys. Lett. 86 202504

    [30]

    Bian L X, Wen Y M, Li P 2010 Acta Phys. Sin. 59 883 (in Chinese) [卞雷祥, 文玉梅, 李平 2010 物理学报 59 883]

    [31]

    Jia Z Y, Guo D M 2008 Theory and Applications of Giant Magnetostrictive Microdisplacement Actuator (Beijing: Science Press) [贾振元, 郭东明 2008 超磁致伸缩材料微位移执行器原理与应用 (北京:科学出版社)]

    [32]

    Zheng X J, Liu X L 2005 J. Appl. Phys. 97 053901

    [33]

    Yao L Q, Wang W 2008 Chinese Journal of Solid Mechanics 29 341 (in Chinese) [姚林泉,王伟 2008 固体力学学报 29 341]

  • [1]

    Ryu J, Caraza A V, Uchino K 2001 J. Appl. Phys. 40 4948

    [2]

    Zhang H, Yang J F, Fang L, Yang W M 2003 Materials Review 17 64 (in Chinese) [张辉, 杨俊, 方亮, 杨卫明 2003 材料导报 17 64]

    [3]

    Dong S X, Li J F, Viehland D 2003 IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 50 1253

    [4]

    Dong S X, Li J F, Viehland D 2004 J. Appl. Phys. 95 2625

    [5]

    Dong S X, Zhai J Y, Wang N G, Bai F M, Li J F, Viehland D 2005 Appl. Phys. Lett. 87 222504

    [6]

    Li P, Wen Y M, Bian L X 2007 Appl. Phys. Lett. 90 022503

    [7]

    Li P, Wen Y M, Liu P G, Li X S, Jia C B 2010 Sensors and Actuators A 151 100

    [8]

    Li P, Wen Y M, Jia C B, Li X S 2011 IEEE Trans. on Industrial Electronics 58 2944

    [9]

    Li P, Wen Y M, Jia C B, Li X S 2011 Journal of Magnetics 16 1

    [10]

    Yang W W, Wen Y M, Li P, Bian L X 2009 Acta Phys. Sin. 58 546 (in Chinese) [杨伟伟, 文玉梅, 李平, 卞雷祥 2009 物理学报 58 546]

    [11]

    Chen L, Li P, Wen Y M, Wang D 2011 Journal of Alloys and Compounds 509 4811

    [12]

    Guo S S, Lu S G, Xu Z, Zhao X Z, Or S W 2006 Appl. Phys. Lett. 88 182906

    [13]

    Wang Y J, Or S W, Chan H L W, Zhao X Y, Luo H S 2008 Appl. Phys. Lett. 92 123510

    [14]

    Srinivasan G, Rasmussen E T, Hayes R 2003 Phys. Rev. B 67 14418

    [15]

    Srinivasan G, Rasmussen E T, Bush A A 2004 Appl. Phys. Lett. A 78 721

    [16]

    Dong S X, Cheng J R, Li J F, Viehland D 2003 Appl. Phys. Lett. 83 4812

    [17]

    Yang F, Wen Y M, Li P, Zheng M, Bian L X 2008 Sensors and Actuators A 141 129

    [18]

    Yu H, Zeng M, Wang Y, Wan J G, Liu J M 2005 Appl. Phys. Lett. 86 32508

    [19]

    Bi K, Wang Y G, Wu W 2011 Sensors and Actuators A 166 48

    [20]

    Zhai J Y, Xing Z P, Dong S X, Li J F, Viehland D 2006 Appl. Phys. Lett. 88 062510

    [21]

    Dong S X, Zhai, J Y, Li J F, Viehland D 2006 Appl. Phys. Lett. 88 082907

    [22]

    Yang C H, Wen Y M, Li P, Bian L X 2008 Acta Phys. Sin. 57 7292 (in Chinese) [阳昌海, 文玉梅, 李平, 卞雷祥 2008 物理学报 57 7292]

    [23]

    Jiles D C 1992 IEEE Trans. Magn. 28 2602

    [24]

    Shi Z, Ma J, Lin Y, Nan C W 2007 J. Appl. Phys. 101 043902

    [25]

    Jia Y H, Tan J B 1999 China Mechanical Engineering 11 1213 (in Chinese) [贾宇辉, 谭久彬 1999 中国机械工程 11 1213]

    [26]

    Zhang Y F, Wen Y M, Li P, Bian L X 2009 Acta Phys. Sin. 58 546 (in Chinese) [张延芳, 文玉梅, 李平,卞雷祥 2009 物理学报 58 546]

    [27]

    Li D M, Shun B Y, Dong W J, Zhang H L 2003 China Mechanical Engineering 14 1498 (in Chinese) [李东明, 孙宝元, 董维杰, 张化岚 2003 中国机械工程 14 1498]

    [28]

    Ristic V M 1988 Acoustic Device Principle (Publishing House of Electronics Industry) p5 (in Chinese) [里斯蒂克 V M 1988 声学器件原理 (电子工业出版社) 第5页]

    [29]

    Wan J G, Li Z Y, Wang Y, Zeng M, Wang G H, Liu J M 2005 Appl. Phys. Lett. 86 202504

    [30]

    Bian L X, Wen Y M, Li P 2010 Acta Phys. Sin. 59 883 (in Chinese) [卞雷祥, 文玉梅, 李平 2010 物理学报 59 883]

    [31]

    Jia Z Y, Guo D M 2008 Theory and Applications of Giant Magnetostrictive Microdisplacement Actuator (Beijing: Science Press) [贾振元, 郭东明 2008 超磁致伸缩材料微位移执行器原理与应用 (北京:科学出版社)]

    [32]

    Zheng X J, Liu X L 2005 J. Appl. Phys. 97 053901

    [33]

    Yao L Q, Wang W 2008 Chinese Journal of Solid Mechanics 29 341 (in Chinese) [姚林泉,王伟 2008 固体力学学报 29 341]

  • [1] 杨 帆, 文玉梅, 李 平, 郑 敏, 卞雷祥. 考虑损耗的磁致/压电层合材料谐振磁电响应分析. 物理学报, 2007, 56(6): 3539-3545. doi: 10.7498/aps.56.3539
    [2] 毕科, 艾迁伟, 杨路, 吴玮, 王寅岗. Ni/Pb(Zr,Ti)O3/TbFe2层状复合材料的谐振磁电特性研究. 物理学报, 2011, 60(5): 057503. doi: 10.7498/aps.60.057503
    [3] 阳昌海, 文玉梅, 李 平, 卞雷祥. 偏置磁场对磁致伸缩/弹性/压电层合材料磁电效应的影响. 物理学报, 2008, 57(11): 7292-7297. doi: 10.7498/aps.57.7292
    [4] 万 红, 沈仁发, 吴学忠. 对称磁电层合板磁电转换效应理论研究. 物理学报, 2005, 54(3): 1426-1430. doi: 10.7498/aps.54.1426
    [5] 陈蕾, 李平, 文玉梅, 王东. 高磁导率材料FeCuNbSiB对超磁致伸缩/压电层合材料磁电性能的影响. 物理学报, 2011, 60(6): 067501. doi: 10.7498/aps.60.067501
    [6] 周勇, 李纯健, 潘昱融. 磁致伸缩/压电层叠复合材料磁电效应分析. 物理学报, 2018, 67(7): 077702. doi: 10.7498/aps.67.20172307
    [7] 鲍丙豪, 骆英. 纵向极化与磁化叠层复合材料磁电效应理论及计算. 物理学报, 2011, 60(6): 067504. doi: 10.7498/aps.60.067504
    [8] 骆英, 鲍丙豪. 有限输入阻抗下压电/磁伸层叠材料磁电效应理论及实验. 物理学报, 2011, 60(1): 017508. doi: 10.7498/aps.60.017508
    [9] 张延芳, 文玉梅, 李平, 卞雷祥. 采用阶梯形弹性基底的磁致伸缩/压电复合结构磁电响应研究. 物理学报, 2009, 58(1): 546-553. doi: 10.7498/aps.58.546
    [10] 曹鸿霞, 张 宁. 磁电双层膜层间耦合的弹性力学研究. 物理学报, 2008, 57(5): 3237-3243. doi: 10.7498/aps.57.3237
    [11] 李廷先, 张铭, 王光明, 郭宏瑞, 李扩社, 严辉. La2/3Sr1/3MnO3/BaTiO3复合薄膜的制备及其电致磁电效应研究. 物理学报, 2011, 60(8): 087501. doi: 10.7498/aps.60.087501
    [12] 周剑平, 施 展, 何泓材, 南策文, 刘 刚. 铁电/铁磁1-3型结构复合材料磁电性能分析. 物理学报, 2006, 55(7): 3766-3771. doi: 10.7498/aps.55.3766
    [13] 施 展, 南策文. 铁电/铁磁三相颗粒复合材料的磁电性能计算. 物理学报, 2004, 53(8): 2766-2770. doi: 10.7498/aps.53.2766
    [14] 卞雷祥, 文玉梅, 李平. 磁致伸缩/压电叠层复合材料磁-机-电耦合系数分析. 物理学报, 2009, 58(6): 4205-4213. doi: 10.7498/aps.58.4205
    [15] 万 红, 刘希从, 谢立强, 吴学忠. TbDyFe/PZT层状复合材料的磁电效应研究. 物理学报, 2005, 54(8): 3872-3877. doi: 10.7498/aps.54.3872
    [16] 曹鸿霞, 张 宁. 过渡族元素掺杂BaTiO3-Tb1-xDyxFe2-y层状复合材料中的磁电效应. 物理学报, 2008, 57(10): 6582-6586. doi: 10.7498/aps.57.6582
    [17] 杨娜娜, 陈轩, 汪尧进. 磁电异质结及器件应用. 物理学报, 2018, 67(15): 157508. doi: 10.7498/aps.67.20180856
    [18] 施展, 陈来柱, 佟永帅, 郑智滨, 杨水源, 王翠萍, 刘兴军. Terfenol-D/PZT磁电复合材料的磁电相位移动研究. 物理学报, 2013, 62(1): 017501. doi: 10.7498/aps.62.017501
    [19] 马静, 施展, 林元华, 南策文. 准2-2型磁电多层复合材料的磁电性能. 物理学报, 2009, 58(8): 5852-5856. doi: 10.7498/aps.58.5852
    [20] 江学范, 方靖淮, 罗礼进, 仲崇贵, 蒋青. 1-3型纳米多铁复合薄膜中电场诱导的磁化研究. 物理学报, 2009, 58(10): 7227-7234. doi: 10.7498/aps.58.7227
  • 引用本文:
    Citation:
计量
  • 文章访问数:  2032
  • PDF下载量:  798
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-08-31
  • 修回日期:  2011-11-28
  • 刊出日期:  2012-07-05

偏置电压对磁致伸缩/压电层合换能结构磁电性能影响

  • 1. 重庆大学光电工程学院, 传感器与仪器研究中心, 重庆 400044
    基金项目: 

    国家自然科学基金(批准号: 50830202, 61071042)资助的课题.

摘要: 分析和测试了偏置电压调整时PZT5/Terfenol-D/PZT8层合换能结构磁电性能. 提出了一种磁致伸缩/压电层合磁电换能结构的一阶谐振频率控制方法. 通过改变压电驱动层的直流电压对磁电层合结构的预应变进行改变, 从而调整谐振频率. 分析偏置电压、 应变、 弹性模量、 谐振频率和谐振磁电电压系数之间关系. 分析表明: 在较小应变情况下, 控制电压几乎可以线性调节谐振频率, 而层合结构谐振磁电电压系数几乎与偏置电压无关. 实验研究验证: 理论与实验结果较好吻合. 在-170 V+170 V的偏置电压时, 谐振频率可以几乎线性调整. 最大频率调整量达到1 kHz, 偏置电压对一阶纵振频率的控制率达到: 2.94 Hz/V. 在偏置磁场为0225 Oe时, 谐振频率调整量与偏置磁场无关. 偏置磁场会改变谐振磁电电压系数, 在大于178 Oe静态磁场偏置时, 磁电电压系数最大, 达到1.65 V/Oe.

English Abstract

参考文献 (33)

目录

    /

    返回文章
    返回