-
近年来的理论和实验研究表明,通过不同离子共掺杂TiO2是减小其禁带宽度的一种有效方法.本文采用基于第一性原理的平面波超软赝势方法研究了C和Zn共掺杂TiO2的能带结构、态密度和光学性质.计算结果表明C-Zn共掺杂导致导带相对Fermi能级发生了明显的下降,同时在TiO2的导带下方与价带上方形成了新的杂质能级,使TiO2的禁带宽度变小, TiO2的光学吸收带边产生红移. 杂质能级可以降低光激发产生的电子-空穴对的复合概率, 提高TiO2的光催化效率. 此外, 掺杂后TiO2在可见光区的吸收系数有明显增加, 能量损失也明显减小.
[1] Yan M F, Rhodes W W 1981 In: Leamy H J, Pike G E, Seager C H ed. Grain Boundaries in Semiconductors (New York: North-Holland)
[2] Reintjes J, Schultz M B 1968 J. Appl. Phys. 39 5254
[3] Byrne J A, Eggins B R, Brown N M D 1998 Appl. Cataly. B: Environ. 17 25
[4] Hou Q Y, Zhang Y, Zhang T, 2008 Acta Phys. Sin. 57 1862 (in Chinese) [侯清玉, 张跃, 张涛 2008 物理学报 57 1862]
[5] Liang L Y, Dai S Y, Fang X Q, Hu L H, 2008 Acta Phys. Sin. 57 1956 (in Chinese) [梁林云, 戴松元, 方霞琴, 胡林华, 2008 物理学报 57 1956]
[6] Hoffmann M R, Martin S T, Choi W 1995 Chem. Rev. 95 69
[7] Khan S U M, Al-Shahry M, Ingler W B 2002 Science 297 2243
[8] Irie H, Watanabe Y, Hashimoto K 2003 Chem. Lett. 32 772
[9] Liang H, Liao B, Ma F R 2010 Nuclear Techniques 12 903 (in Chinese) [梁宏, 廖斌, 马芙蓉 2010 核技术 12 903]
[10] Xu Ling, Tang Chao-Qun, Qian Jun 2010 Acta Phys. Sin. 59 2721 (in Chinese) [徐凌, 唐超群, 钱俊 2010 物理学报 59 2721]
[11] Kresse G, Hafner J. 1993 Phys. Rev. B 47 558
[12] Yang Z Y, Peng L G, Zhou A N 2006 New Chem. Mater. 34 35 (in Chinese) [杨志远, 彭龙贵, 周安宁 2006 化工新型材料 34 35]
[13] Asahi R, Taga Y, Mannstadt W, Freeman A J 2000 Phys. Rev. B 61 7459
[14] Stampfl C, Van de Walle C G 1999 Phys. Rev. B 59 5521
[15] Zhang Y, Tang C Q, Dai J 2005 Acta Phys. Sin. 54 323 (in Chinese) [张勇, 唐超群, 戴君 2005 物理学报 54 323]
[16] Xu Ling, Tang C Q, Dai Lei 2007 Acta Phys. Sin. 56 1048 (in Chinese) [徐凌, 唐超群, 戴磊 2007 物理学报 56 1048]
[17] Huang D S, Chen C F, Li Y H 2007 Chin. J. Inorg. Chem. 23 728 (in Chinese) [黄东升, 陈朝凤, 李玉花 2007 无机化学学报 23 728]
[18] Shen X C 1992 Semiconductor Spectrum and Optical Quality (2nd Ed.) (Beijing: Science Press) (in Chinese) [沈学础 1992 半导体光谱和光学性质 (第2版) (北京: 科学出版社)]
[19] Yang X X, Cao C D, Erickson L, Hohn K, Maghirang R, Klabunde K 2009 Appl. Cataly. B 91 657
-
[1] Yan M F, Rhodes W W 1981 In: Leamy H J, Pike G E, Seager C H ed. Grain Boundaries in Semiconductors (New York: North-Holland)
[2] Reintjes J, Schultz M B 1968 J. Appl. Phys. 39 5254
[3] Byrne J A, Eggins B R, Brown N M D 1998 Appl. Cataly. B: Environ. 17 25
[4] Hou Q Y, Zhang Y, Zhang T, 2008 Acta Phys. Sin. 57 1862 (in Chinese) [侯清玉, 张跃, 张涛 2008 物理学报 57 1862]
[5] Liang L Y, Dai S Y, Fang X Q, Hu L H, 2008 Acta Phys. Sin. 57 1956 (in Chinese) [梁林云, 戴松元, 方霞琴, 胡林华, 2008 物理学报 57 1956]
[6] Hoffmann M R, Martin S T, Choi W 1995 Chem. Rev. 95 69
[7] Khan S U M, Al-Shahry M, Ingler W B 2002 Science 297 2243
[8] Irie H, Watanabe Y, Hashimoto K 2003 Chem. Lett. 32 772
[9] Liang H, Liao B, Ma F R 2010 Nuclear Techniques 12 903 (in Chinese) [梁宏, 廖斌, 马芙蓉 2010 核技术 12 903]
[10] Xu Ling, Tang Chao-Qun, Qian Jun 2010 Acta Phys. Sin. 59 2721 (in Chinese) [徐凌, 唐超群, 钱俊 2010 物理学报 59 2721]
[11] Kresse G, Hafner J. 1993 Phys. Rev. B 47 558
[12] Yang Z Y, Peng L G, Zhou A N 2006 New Chem. Mater. 34 35 (in Chinese) [杨志远, 彭龙贵, 周安宁 2006 化工新型材料 34 35]
[13] Asahi R, Taga Y, Mannstadt W, Freeman A J 2000 Phys. Rev. B 61 7459
[14] Stampfl C, Van de Walle C G 1999 Phys. Rev. B 59 5521
[15] Zhang Y, Tang C Q, Dai J 2005 Acta Phys. Sin. 54 323 (in Chinese) [张勇, 唐超群, 戴君 2005 物理学报 54 323]
[16] Xu Ling, Tang C Q, Dai Lei 2007 Acta Phys. Sin. 56 1048 (in Chinese) [徐凌, 唐超群, 戴磊 2007 物理学报 56 1048]
[17] Huang D S, Chen C F, Li Y H 2007 Chin. J. Inorg. Chem. 23 728 (in Chinese) [黄东升, 陈朝凤, 李玉花 2007 无机化学学报 23 728]
[18] Shen X C 1992 Semiconductor Spectrum and Optical Quality (2nd Ed.) (Beijing: Science Press) (in Chinese) [沈学础 1992 半导体光谱和光学性质 (第2版) (北京: 科学出版社)]
[19] Yang X X, Cao C D, Erickson L, Hohn K, Maghirang R, Klabunde K 2009 Appl. Cataly. B 91 657
引用本文: |
Citation: |
计量
- 文章访问数: 2384
- PDF下载量: 693
- 被引次数: 0