搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳-锌共掺杂锐钛矿相TiO2 电子结构与光学性质的第一性原理研究

王寅 冯庆 王渭华 岳远霞

碳-锌共掺杂锐钛矿相TiO2 电子结构与光学性质的第一性原理研究

王寅, 冯庆, 王渭华, 岳远霞
PDF
导出引用
导出核心图
  • 近年来的理论和实验研究表明,通过不同离子共掺杂TiO2是减小其禁带宽度的一种有效方法.本文采用基于第一性原理的平面波超软赝势方法研究了C和Zn共掺杂TiO2的能带结构、态密度和光学性质.计算结果表明C-Zn共掺杂导致导带相对Fermi能级发生了明显的下降,同时在TiO2的导带下方与价带上方形成了新的杂质能级,使TiO2的禁带宽度变小, TiO2的光学吸收带边产生红移. 杂质能级可以降低光激发产生的电子-空穴对的复合概率, 提高TiO2的光催化效率. 此外, 掺杂后TiO2在可见光区的吸收系数有明显增加, 能量损失也明显减小.
    • 基金项目: 国家自然科学基金青年科学基金 (批准号:61106129)资助的课题.
    [1]

    Yan M F, Rhodes W W 1981 In: Leamy H J, Pike G E, Seager C H ed. Grain Boundaries in Semiconductors (New York: North-Holland)

    [2]

    Reintjes J, Schultz M B 1968 J. Appl. Phys. 39 5254

    [3]

    Byrne J A, Eggins B R, Brown N M D 1998 Appl. Cataly. B: Environ. 17 25

    [4]

    Hou Q Y, Zhang Y, Zhang T, 2008 Acta Phys. Sin. 57 1862 (in Chinese) [侯清玉, 张跃, 张涛 2008 物理学报 57 1862]

    [5]

    Liang L Y, Dai S Y, Fang X Q, Hu L H, 2008 Acta Phys. Sin. 57 1956 (in Chinese) [梁林云, 戴松元, 方霞琴, 胡林华, 2008 物理学报 57 1956]

    [6]

    Hoffmann M R, Martin S T, Choi W 1995 Chem. Rev. 95 69

    [7]

    Khan S U M, Al-Shahry M, Ingler W B 2002 Science 297 2243

    [8]

    Irie H, Watanabe Y, Hashimoto K 2003 Chem. Lett. 32 772

    [9]

    Liang H, Liao B, Ma F R 2010 Nuclear Techniques 12 903 (in Chinese) [梁宏, 廖斌, 马芙蓉 2010 核技术 12 903]

    [10]

    Xu Ling, Tang Chao-Qun, Qian Jun 2010 Acta Phys. Sin. 59 2721 (in Chinese) [徐凌, 唐超群, 钱俊 2010 物理学报 59 2721]

    [11]

    Kresse G, Hafner J. 1993 Phys. Rev. B 47 558

    [12]

    Yang Z Y, Peng L G, Zhou A N 2006 New Chem. Mater. 34 35 (in Chinese) [杨志远, 彭龙贵, 周安宁 2006 化工新型材料 34 35]

    [13]

    Asahi R, Taga Y, Mannstadt W, Freeman A J 2000 Phys. Rev. B 61 7459

    [14]

    Stampfl C, Van de Walle C G 1999 Phys. Rev. B 59 5521

    [15]

    Zhang Y, Tang C Q, Dai J 2005 Acta Phys. Sin. 54 323 (in Chinese) [张勇, 唐超群, 戴君 2005 物理学报 54 323]

    [16]

    Xu Ling, Tang C Q, Dai Lei 2007 Acta Phys. Sin. 56 1048 (in Chinese) [徐凌, 唐超群, 戴磊 2007 物理学报 56 1048]

    [17]

    Huang D S, Chen C F, Li Y H 2007 Chin. J. Inorg. Chem. 23 728 (in Chinese) [黄东升, 陈朝凤, 李玉花 2007 无机化学学报 23 728]

    [18]

    Shen X C 1992 Semiconductor Spectrum and Optical Quality (2nd Ed.) (Beijing: Science Press) (in Chinese) [沈学础 1992 半导体光谱和光学性质 (第2版) (北京: 科学出版社)]

    [19]

    Yang X X, Cao C D, Erickson L, Hohn K, Maghirang R, Klabunde K 2009 Appl. Cataly. B 91 657

  • [1]

    Yan M F, Rhodes W W 1981 In: Leamy H J, Pike G E, Seager C H ed. Grain Boundaries in Semiconductors (New York: North-Holland)

    [2]

    Reintjes J, Schultz M B 1968 J. Appl. Phys. 39 5254

    [3]

    Byrne J A, Eggins B R, Brown N M D 1998 Appl. Cataly. B: Environ. 17 25

    [4]

    Hou Q Y, Zhang Y, Zhang T, 2008 Acta Phys. Sin. 57 1862 (in Chinese) [侯清玉, 张跃, 张涛 2008 物理学报 57 1862]

    [5]

    Liang L Y, Dai S Y, Fang X Q, Hu L H, 2008 Acta Phys. Sin. 57 1956 (in Chinese) [梁林云, 戴松元, 方霞琴, 胡林华, 2008 物理学报 57 1956]

    [6]

    Hoffmann M R, Martin S T, Choi W 1995 Chem. Rev. 95 69

    [7]

    Khan S U M, Al-Shahry M, Ingler W B 2002 Science 297 2243

    [8]

    Irie H, Watanabe Y, Hashimoto K 2003 Chem. Lett. 32 772

    [9]

    Liang H, Liao B, Ma F R 2010 Nuclear Techniques 12 903 (in Chinese) [梁宏, 廖斌, 马芙蓉 2010 核技术 12 903]

    [10]

    Xu Ling, Tang Chao-Qun, Qian Jun 2010 Acta Phys. Sin. 59 2721 (in Chinese) [徐凌, 唐超群, 钱俊 2010 物理学报 59 2721]

    [11]

    Kresse G, Hafner J. 1993 Phys. Rev. B 47 558

    [12]

    Yang Z Y, Peng L G, Zhou A N 2006 New Chem. Mater. 34 35 (in Chinese) [杨志远, 彭龙贵, 周安宁 2006 化工新型材料 34 35]

    [13]

    Asahi R, Taga Y, Mannstadt W, Freeman A J 2000 Phys. Rev. B 61 7459

    [14]

    Stampfl C, Van de Walle C G 1999 Phys. Rev. B 59 5521

    [15]

    Zhang Y, Tang C Q, Dai J 2005 Acta Phys. Sin. 54 323 (in Chinese) [张勇, 唐超群, 戴君 2005 物理学报 54 323]

    [16]

    Xu Ling, Tang C Q, Dai Lei 2007 Acta Phys. Sin. 56 1048 (in Chinese) [徐凌, 唐超群, 戴磊 2007 物理学报 56 1048]

    [17]

    Huang D S, Chen C F, Li Y H 2007 Chin. J. Inorg. Chem. 23 728 (in Chinese) [黄东升, 陈朝凤, 李玉花 2007 无机化学学报 23 728]

    [18]

    Shen X C 1992 Semiconductor Spectrum and Optical Quality (2nd Ed.) (Beijing: Science Press) (in Chinese) [沈学础 1992 半导体光谱和光学性质 (第2版) (北京: 科学出版社)]

    [19]

    Yang X X, Cao C D, Erickson L, Hohn K, Maghirang R, Klabunde K 2009 Appl. Cataly. B 91 657

  • 引用本文:
    Citation:
计量
  • 文章访问数:  2384
  • PDF下载量:  693
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-02-15
  • 修回日期:  2012-05-08

碳-锌共掺杂锐钛矿相TiO2 电子结构与光学性质的第一性原理研究

  • 1. 重庆师范大学光学工程重点实验室, 重庆 400047
    基金项目: 

    国家自然科学基金青年科学基金 (批准号:61106129)资助的课题.

摘要: 近年来的理论和实验研究表明,通过不同离子共掺杂TiO2是减小其禁带宽度的一种有效方法.本文采用基于第一性原理的平面波超软赝势方法研究了C和Zn共掺杂TiO2的能带结构、态密度和光学性质.计算结果表明C-Zn共掺杂导致导带相对Fermi能级发生了明显的下降,同时在TiO2的导带下方与价带上方形成了新的杂质能级,使TiO2的禁带宽度变小, TiO2的光学吸收带边产生红移. 杂质能级可以降低光激发产生的电子-空穴对的复合概率, 提高TiO2的光催化效率. 此外, 掺杂后TiO2在可见光区的吸收系数有明显增加, 能量损失也明显减小.

English Abstract

参考文献 (19)

目录

    /

    返回文章
    返回