搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Al2O3X2 (X= H, D, T)的电子振动近似方法

杨雷 谌晓洪 王玲 胡连瑞

Al2O3X2 (X= H, D, T)的电子振动近似方法

杨雷, 谌晓洪, 王玲, 胡连瑞
PDF
导出引用
导出核心图
  • 用密度泛函理论在B3LYP/6-311++g (d, p)基组水平上对 Al2O3X2 (X= H, D, T)分子的可能较低能量构型进行了几何优化. 结果表明该分子的基态电子态和对称性为Al2O3X2 (X= H, D, T) (1A') Cs, 计算了氢同位素分子及Al2O3X2 (X= H, D, T)的电子能量E、 定容热容CV和熵S. 用电子振动近似方法计算了固体Al2O3的氢化热力学函数 H0, S0, G0 , 以及平衡压力与温度的关系. 当Al2O3吸附氢 (氘,氚)形成固体时, 反应的氢氘氚排代效应的顺序为氚排代氘, 氘排代氢, 与钛等金属与氢及其同位素反应的氢氘氚排代效应的顺序相反. 总体来说, 这种排代效应都非常弱. 随着温度的增加, 这系列反应的氢氘氚排代效应趋于消失.
    • 基金项目: 四川省科技支撑计划(批准号: 2009PZ0055)和四川省教育厅重点项目(批准号: 10ZA105)资助的课题.
    [1]

    Linevsky M J, White D, Mann D E 1964 J. Chem. Phys. 41 542

    [2]

    Cai M, Carter C C, Miller T A, Bondydey V E 1991 J. Chem. Phys. 95 73

    [3]

    Desai S R, Wu H, Rohlfing C M, Wang L S 1997 J. Chem. Phys. 106 73

    [4]

    Serebrennikov L V, Osin S B, Maltsev A A 1982 J. Mol. Struct. 81 25

    [5]

    Sonchlk S M, Andrews L, Cartson K D 1983 J. Phys. Chem. 87 2004

    [6]

    Andrews L, Burkholder T R, Yustein J T 1992 J. Phys. Chem. 96 10182

    [7]

    Bucher P R, Yetter A, Dryer F L, Parr T P, Hanson-Parr D M, Vicenzi E P 1996 26th Symposium (International) on Combustion, Combustion Institute Pittsburg, PA p1899

    [8]

    Friedman R, MaCek A 1963 9th Symposium (International) on Combustion, Combustion Institute Pittsburgh, PA p703

    [9]

    Mao H P, Wang H Y, Ni Y, Xu G L, Ma M Z, Zhu Z H, Tang Y J 2004 Acta Phys. Sin. 53 1766 (in Chinese) [毛华平, 王红艳, 倪羽, 徐国亮, 马美仲, 朱正和, 唐永建 2004 物理学报 53 1766]

    [10]

    Mao H P, Wang H Y, Tang Y J, Zhu Z H, Zheng S T 2004 Acta Phys. Sin. 53 37 (in Chinese) [毛华平, 王红艳, 唐永键, 朱正和, 郑少涛 2004 物理学报 53 37]

    [11]

    Li X X, Jia T Q, Feng D H, Xu Z Z 2004 Acta Phys. Sin. 53 2154 (in Chinese) [李晓溪, 贾天卿, 冯东海, 徐至展 2004 物理学报 53 2154]

    [12]

    Ma C L 2004 Acta Phys. Sin. 53 1952 (in Chinese) [马春兰 2004 物理学报 53 1952 ]

    [13]

    Hu Z L 2002 Material for Stored Hydrogen (Beijing: Chemical Industry Press) (in Chinese) [胡子龙 2002 储氢材料 (北京: 化学工业出版社)]

    [14]

    Cobos C J 2002 J. Mol. Struc. 581 17

    [15]

    Vacek G, De Leeuw B J, Schaefer III H F 1993 J. Chem. Phys. 98 8704

    [16]

    Pilgrim J S, Robbins D L, Duncan M A 1993 Chem. Phys. Lett. 202 203

    [17]

    Zhu Z H, Yu H G 1997 Molecular Structure and Potential Energy Function (Beijing: Science Press) (in Chinese) [朱正和, 俞华根 1997 分子结构与势能函数(北京: 科学出版社)]

    [18]

    Alexander O E 1977 Intermediate Quantum Theory of Crystalline Solids (Englewood Cliffs: Prentice-Hall Inc)

    [19]

    Herzberg G 1979 Molecular Spectra and Molecular Structure VI (Newyork: van Norstrand Reinhold Company)

    [20]

    Christopher J C 2002 Essentials of Computational Chemistry ( Chichester: John Wiley and Sons)

    [21]

    Zhu Z H, Liu Y C, Jiang G, Tan M L, Wu S, Jiang G Q, Luo D L 1998 Chin. J. Atomic and Molecular Physics 10 435 (in Chinese) [朱正和, 刘幼成, 蒋刚, 谭明亮, 武胜, 蒋国强, 罗德礼 1998 原子分子物理学报 10 435]

    [22]

    Zhu Z H, Sun Y, Zhong Z K, Zhang L, Wang H Y 2003 Chin. J. Atomic and Molecular Physics 20 525 (in Chinese) [朱正和, 孙颖, 钟正坤, 张莉, 王和义 2003 原子与分子物理学报 20 525]

    [23]

    Shen X H, Zhu Z H, Gao T, Luo S Z 2006 Acta Phys. Sin. 55 3420 (in Chinese) [谌晓洪, 朱正和, 高涛, 罗顺忠 2006 物理学报 55 3420]

    [24]

    Shen X H, Gao T, Luo S Z, Ma M Z, Xie A D, Zhu Z H 2006 Acta Phys. Sin. 55 1113 (in Chinese) [谌晓洪, 高涛, 罗顺忠, 马美仲, 谢安东, 朱正和 2006 物理学报 55 1113]

    [25]

    Gaussian 03, Revision B 03, Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J A, Vreven Jr T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C, Pople J A, 2003 Gaussian, Inc., Pittsburgh PA

  • [1]

    Linevsky M J, White D, Mann D E 1964 J. Chem. Phys. 41 542

    [2]

    Cai M, Carter C C, Miller T A, Bondydey V E 1991 J. Chem. Phys. 95 73

    [3]

    Desai S R, Wu H, Rohlfing C M, Wang L S 1997 J. Chem. Phys. 106 73

    [4]

    Serebrennikov L V, Osin S B, Maltsev A A 1982 J. Mol. Struct. 81 25

    [5]

    Sonchlk S M, Andrews L, Cartson K D 1983 J. Phys. Chem. 87 2004

    [6]

    Andrews L, Burkholder T R, Yustein J T 1992 J. Phys. Chem. 96 10182

    [7]

    Bucher P R, Yetter A, Dryer F L, Parr T P, Hanson-Parr D M, Vicenzi E P 1996 26th Symposium (International) on Combustion, Combustion Institute Pittsburg, PA p1899

    [8]

    Friedman R, MaCek A 1963 9th Symposium (International) on Combustion, Combustion Institute Pittsburgh, PA p703

    [9]

    Mao H P, Wang H Y, Ni Y, Xu G L, Ma M Z, Zhu Z H, Tang Y J 2004 Acta Phys. Sin. 53 1766 (in Chinese) [毛华平, 王红艳, 倪羽, 徐国亮, 马美仲, 朱正和, 唐永建 2004 物理学报 53 1766]

    [10]

    Mao H P, Wang H Y, Tang Y J, Zhu Z H, Zheng S T 2004 Acta Phys. Sin. 53 37 (in Chinese) [毛华平, 王红艳, 唐永键, 朱正和, 郑少涛 2004 物理学报 53 37]

    [11]

    Li X X, Jia T Q, Feng D H, Xu Z Z 2004 Acta Phys. Sin. 53 2154 (in Chinese) [李晓溪, 贾天卿, 冯东海, 徐至展 2004 物理学报 53 2154]

    [12]

    Ma C L 2004 Acta Phys. Sin. 53 1952 (in Chinese) [马春兰 2004 物理学报 53 1952 ]

    [13]

    Hu Z L 2002 Material for Stored Hydrogen (Beijing: Chemical Industry Press) (in Chinese) [胡子龙 2002 储氢材料 (北京: 化学工业出版社)]

    [14]

    Cobos C J 2002 J. Mol. Struc. 581 17

    [15]

    Vacek G, De Leeuw B J, Schaefer III H F 1993 J. Chem. Phys. 98 8704

    [16]

    Pilgrim J S, Robbins D L, Duncan M A 1993 Chem. Phys. Lett. 202 203

    [17]

    Zhu Z H, Yu H G 1997 Molecular Structure and Potential Energy Function (Beijing: Science Press) (in Chinese) [朱正和, 俞华根 1997 分子结构与势能函数(北京: 科学出版社)]

    [18]

    Alexander O E 1977 Intermediate Quantum Theory of Crystalline Solids (Englewood Cliffs: Prentice-Hall Inc)

    [19]

    Herzberg G 1979 Molecular Spectra and Molecular Structure VI (Newyork: van Norstrand Reinhold Company)

    [20]

    Christopher J C 2002 Essentials of Computational Chemistry ( Chichester: John Wiley and Sons)

    [21]

    Zhu Z H, Liu Y C, Jiang G, Tan M L, Wu S, Jiang G Q, Luo D L 1998 Chin. J. Atomic and Molecular Physics 10 435 (in Chinese) [朱正和, 刘幼成, 蒋刚, 谭明亮, 武胜, 蒋国强, 罗德礼 1998 原子分子物理学报 10 435]

    [22]

    Zhu Z H, Sun Y, Zhong Z K, Zhang L, Wang H Y 2003 Chin. J. Atomic and Molecular Physics 20 525 (in Chinese) [朱正和, 孙颖, 钟正坤, 张莉, 王和义 2003 原子与分子物理学报 20 525]

    [23]

    Shen X H, Zhu Z H, Gao T, Luo S Z 2006 Acta Phys. Sin. 55 3420 (in Chinese) [谌晓洪, 朱正和, 高涛, 罗顺忠 2006 物理学报 55 3420]

    [24]

    Shen X H, Gao T, Luo S Z, Ma M Z, Xie A D, Zhu Z H 2006 Acta Phys. Sin. 55 1113 (in Chinese) [谌晓洪, 高涛, 罗顺忠, 马美仲, 谢安东, 朱正和 2006 物理学报 55 1113]

    [25]

    Gaussian 03, Revision B 03, Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J A, Vreven Jr T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C, Pople J A, 2003 Gaussian, Inc., Pittsburgh PA

  • [1] 朱正和, 王 玲, 谌晓洪, 罗顺忠. Al2O3X(X=H, D, T)的电子振动近似理论方法研究. 物理学报, 2007, 56(8): 4467-4476. doi: 10.7498/aps.56.4467
    [2] 任桂明, 郑圆圆, 王丁, 王林, 谌晓洪, 王玲, 马敏, 刘华兵. 氢化氧化铝的同位素效应研究. 物理学报, 2014, 63(23): 233104. doi: 10.7498/aps.63.233104
    [3] 朱正和, 薛卫东. CUO基态分子热力学稳定性研究. 物理学报, 2003, 52(12): 2965-2969. doi: 10.7498/aps.52.2965
    [4] 宋晓艳, 高金萍, 张久兴. 纳米多晶体的热力学函数及其在相变热力学中的应用. 物理学报, 2005, 54(3): 1313-1319. doi: 10.7498/aps.54.1313
    [5] 薛卫东, 朱正和, 蒋 刚, 王红艳, 熊必涛, 蒙大桥. 铀与水蒸气体系的热力学性质计算. 物理学报, 2003, 52(7): 1617-1623. doi: 10.7498/aps.52.1617
    [6] 孙继忠, 张治海, 刘升光, 王德真. 载能氢同位素原子与石墨(001)面碰撞的分子动力学研究. 物理学报, 2012, 61(5): 055201. doi: 10.7498/aps.61.055201
    [7] 谢安东, 张 莉, 朱正和, 阮 文, 罗文浪. 氢同位素氚水T2O(X1A1)的解析势能函数. 物理学报, 2008, 57(8): 4833-4839. doi: 10.7498/aps.57.4833
    [8] 高 涛, 王红艳, 易有根, 谭明亮, 朱正和, 孙 颖, 汪小琳, 傅依备. PuO分子X5Σ-态的势能函数及热力学函数的量子力学计算. 物理学报, 1999, 48(12): 2222-2227. doi: 10.7498/aps.48.2222
    [9] 陈基, 冯页新, 李新征, 王恩哥. 基于路径积分分子动力学与热力学积分方法的高压氢自由能计算. 物理学报, 2015, 64(18): 183101. doi: 10.7498/aps.64.183101
    [10] 王茗馨, 王美山, 杨传路, 刘佳, 马晓光, 王立志. 同位素效应对H+NH→N+H2反应的立体动力学性质的影响. 物理学报, 2015, 64(4): 043402. doi: 10.7498/aps.64.043402
    [11] 刘新国, 孙海竹, 刘会荣, 张庆刚. O++H2及其同位素取代反应的立体动力学研究. 物理学报, 2010, 59(11): 7796-7802. doi: 10.7498/aps.59.7796
    [12] 孔浩, 刘新国, 许文武, 梁景娟, 张庆刚. He+H+2及其同位素取代反应的立体动力学研究. 物理学报, 2009, 58(10): 6926-6931. doi: 10.7498/aps.58.6926
    [13] 徐梅, 杨向东, 令狐荣锋, 王晓璐, 吕兵. Ne原子与H2分子碰撞的同位素替代效应研究. 物理学报, 2010, 59(4): 2416-2422. doi: 10.7498/aps.59.2416
    [14] 张 莉, 朱正和, 杨本福, 龙兴贵, 罗顺忠. 氢同位素化合物TiH2,TiD2和TiT2的电子振动近似理论方法. 物理学报, 2006, 55(10): 5418-5423. doi: 10.7498/aps.55.5418
    [15] 许燕, 赵娟, 王军, 刘芳, 孟庆田. 碰撞能和同位素取代对H+BrF→HBr+F反应立体动力学影响的理论研究. 物理学报, 2010, 59(6): 3885-3891. doi: 10.7498/aps.59.3885
    [16] 汪荣凯, 沈光先, 令狐荣锋, 杨向东. 3He(4He)与H2分子碰撞的同位素效应研究. 物理学报, 2008, 57(6): 3452-3457. doi: 10.7498/aps.57.3452
    [17] 汪荣凯, 令狐荣锋, 沈光先, 杨向东. 不同能量的氦原子与同位素分子H2(D2,T2)碰撞分波截面的理论计算. 物理学报, 2008, 57(1): 155-159. doi: 10.7498/aps.57.155
    [18] 林 洁, 刘绍军, 李融武, 祝文军. 自由能方法与零压下Al的熔化温度. 物理学报, 2008, 57(1): 61-66. doi: 10.7498/aps.57.61
    [19] 夏文泽, 于永江, 杨传路. 同位素取代和碰撞能对N(4S)+H2反应立体动力学性质的影响. 物理学报, 2012, 61(22): 223401. doi: 10.7498/aps.61.223401
    [20] 马兴孝. 激光分离同位素的动力学. 物理学报, 1979, 164(1): 1-14. doi: 10.7498/aps.28.1
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1120
  • PDF下载量:  290
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-02-02
  • 修回日期:  2012-05-20
  • 刊出日期:  2012-12-05

Al2O3X2 (X= H, D, T)的电子振动近似方法

  • 1. 西华大学物理与化学学院, 成都 610039;
  • 2. 西华大学先进计算中心, 成都 610039
    基金项目: 

    四川省科技支撑计划(批准号: 2009PZ0055)和四川省教育厅重点项目(批准号: 10ZA105)资助的课题.

摘要: 用密度泛函理论在B3LYP/6-311++g (d, p)基组水平上对 Al2O3X2 (X= H, D, T)分子的可能较低能量构型进行了几何优化. 结果表明该分子的基态电子态和对称性为Al2O3X2 (X= H, D, T) (1A') Cs, 计算了氢同位素分子及Al2O3X2 (X= H, D, T)的电子能量E、 定容热容CV和熵S. 用电子振动近似方法计算了固体Al2O3的氢化热力学函数 H0, S0, G0 , 以及平衡压力与温度的关系. 当Al2O3吸附氢 (氘,氚)形成固体时, 反应的氢氘氚排代效应的顺序为氚排代氘, 氘排代氢, 与钛等金属与氢及其同位素反应的氢氘氚排代效应的顺序相反. 总体来说, 这种排代效应都非常弱. 随着温度的增加, 这系列反应的氢氘氚排代效应趋于消失.

English Abstract

参考文献 (25)

目录

    /

    返回文章
    返回