-
利用线性稳定分析的方法, 在不满足原子流相等的条件下, 对光晶格中双组分玻色-爱因斯坦凝聚原子(BEC)系统 的调制不稳定性区域与不同BEC组分的波长和不同的调制波长, 以及两组分BEC间相互作用大小之间的关系进行了研究. 结果显示, 光晶格中双组分BEC系统的调制稳定性的区域在不满足原子流相等的条件下, 随不同的波长, 不同的调制和相互作用之间的大小会出现了较大的变化. 相应结果可为实际应用中如何操控双组分BEC提供有用的信息.
-
关键词:
- 玻色-爱因斯坦凝聚体 /
- 调制不稳定性 /
- 光晶格 /
- 双分量
[1] Cross M C, Hohenberg P C 1993 Rev. Mod. Phys. 65 851
[2] Agrawal G P 1995 Nonlinear Fiber Optics 2nd ed. (Academic, San Diego)
[3] Salasnich L, Parola A, Reatto L 2003 Phys. Rev. Lett. 91 080405
[4] Liang Z X, Zhang Z D, Liu W M 2005 Phys. Rev. Lett. 94 050402
[5] Ji A C, Liu W M, Song J L, Zhou F 2008 Phys. Rev. Lett. 101 010402
[6] Qi R, Yu X L, Li Z B, Liu W M 2009 Phys. Rev. Lett. 102 185301
[7] Konotop V V, Salerno M 2002 Phys. Rev. A 65 021602(R)
[8] Smerzi A, Trombettoni A, Kevrekidis P G, Bishop A R 2002 Phys. Rev. Lett. 89 170402
[9] Modugno M, Tozzo C, Dalfovo F 2004 Phys. Rev. A 70 043625
[10] Wu B, Niu Q 2003 New J. Phys. 5104
[11] Zheng Y, Kostrun M, Javanainen J 2004 Phys. Rev. Lett. 93 230401
[12] Cataliotti F S, Fallani L, Ferlaino F, Fort C, Maddaloni P, Inguscio M 2003 New J. Phys. 5 71
[13] Ruostekoski J, Anglin J R 2001Phys. Rev. Lett. 86 3934
[14] Vogels J M, Freeland R S, Tsai C C, Verhaar B J, Heinzen D J 2000 Phys. Rev. A 61 043407
[15] Modugno G, Modugno M, Riboli F, Roati G, Inguscio M 2002 Phys. Rev. Lett. 89 190404
[16] Hall D S, Matthews M R, Ensher J R, Wieman C E, Cornell E A 1998 Phys. Rev. Lett. 811539
[17] Goldstein E V, Meystre P 1997 Phys. Rev. A 552935
[18] Ruostekoski J, Dutton Z 2007 Phys. Rev. A 76 063607
[19] Kasamatsu K, Tsubota M 2006 Phys. Rev. A 74 013617
[20] Jin G R, Kim C K, Nahm K 2005 Phys. Rev. A 72045601
[21] Zhang W, Zhou D L, Chang M S, Chapman M S, You L 2005 Phys. Rev. Lett. 95180403
[22] Raju T S, Panigrahi P K and Porsezian K 2005 Phys. Rev. A 71 035601
-
[1] Cross M C, Hohenberg P C 1993 Rev. Mod. Phys. 65 851
[2] Agrawal G P 1995 Nonlinear Fiber Optics 2nd ed. (Academic, San Diego)
[3] Salasnich L, Parola A, Reatto L 2003 Phys. Rev. Lett. 91 080405
[4] Liang Z X, Zhang Z D, Liu W M 2005 Phys. Rev. Lett. 94 050402
[5] Ji A C, Liu W M, Song J L, Zhou F 2008 Phys. Rev. Lett. 101 010402
[6] Qi R, Yu X L, Li Z B, Liu W M 2009 Phys. Rev. Lett. 102 185301
[7] Konotop V V, Salerno M 2002 Phys. Rev. A 65 021602(R)
[8] Smerzi A, Trombettoni A, Kevrekidis P G, Bishop A R 2002 Phys. Rev. Lett. 89 170402
[9] Modugno M, Tozzo C, Dalfovo F 2004 Phys. Rev. A 70 043625
[10] Wu B, Niu Q 2003 New J. Phys. 5104
[11] Zheng Y, Kostrun M, Javanainen J 2004 Phys. Rev. Lett. 93 230401
[12] Cataliotti F S, Fallani L, Ferlaino F, Fort C, Maddaloni P, Inguscio M 2003 New J. Phys. 5 71
[13] Ruostekoski J, Anglin J R 2001Phys. Rev. Lett. 86 3934
[14] Vogels J M, Freeland R S, Tsai C C, Verhaar B J, Heinzen D J 2000 Phys. Rev. A 61 043407
[15] Modugno G, Modugno M, Riboli F, Roati G, Inguscio M 2002 Phys. Rev. Lett. 89 190404
[16] Hall D S, Matthews M R, Ensher J R, Wieman C E, Cornell E A 1998 Phys. Rev. Lett. 811539
[17] Goldstein E V, Meystre P 1997 Phys. Rev. A 552935
[18] Ruostekoski J, Dutton Z 2007 Phys. Rev. A 76 063607
[19] Kasamatsu K, Tsubota M 2006 Phys. Rev. A 74 013617
[20] Jin G R, Kim C K, Nahm K 2005 Phys. Rev. A 72045601
[21] Zhang W, Zhou D L, Chang M S, Chapman M S, You L 2005 Phys. Rev. Lett. 95180403
[22] Raju T S, Panigrahi P K and Porsezian K 2005 Phys. Rev. A 71 035601
引用本文: |
Citation: |
计量
- 文章访问数: 1809
- PDF下载量: 431
- 被引次数: 0