-
基于密度泛函理论的第一性原理方法研究了BiOCl{001}的三种不同终端面({001}-1Cl, {001}-BiO 和{001}-2Cl)的表面弛豫、能带结构、电子态密度和表面能. 计算结果表明: {001}-1Cl, {001}-BiO和{001}-2Cl表面均发生明显弛豫, 而在双Cl原子层处的层间距变化较大, 但未出现振荡弛豫现象, 其中{001}-1Cl表面弛豫较小. 与体相BiOCl电子结构相比, BiOCl{001}面具有较窄的带隙宽度, 并呈现较强局域性:对于{001}-BiO表面, 其导带与价带均往低能方向发生较大移动, 并且在导带底部出现表面态; 而{001}-2Cl表面的表面态主要出现在价带顶; {001}-1Cl表面的带隙中则无表面态产生; 表面态的出现导致{001}-BiO面和{001}-2Cl面带隙明显减小. BiOCl{001}三种终端表面的表面能分析结果表明, {001}-1Cl表面的表面能最小(0.09206 J·m-2), 结构最稳定, 而{001}-BiO表面和{001}-2Cl表面的表面能分别为2.392和2.461 J·m-2. 理论预测{001}-BiO表面和{001}-2Cl表面具有较高的活性, 但在BiOCl晶体生长过程中不易暴露. 本文计算结果为实验获得BiOCl高活性面{001}给予了基础理论解释, 进一步为BiOCl新型光催化材料的应用研究提供理论指导.
-
关键词:
- BiOCl{001}表面 /
- 表面弛豫 /
- 表面能 /
- 第一性原理
[1] Deng Z T, Tang F Q, Muscat A J 2008 Nanotechnology 19 295705-1
[2] Kusainova A M, Lightfoot P, Zhou W Z, Stefanovich S Y, Mosunov A V, Dolgikh V A 2001 Chem. Mater. 13 4731
[3] Charkin D O, Berdonosv P S, Moisejev A M, Shagiakhmetov R R, Dolgikh V A, Lightfoot P 1999 J. Solid. State. Chem. 147 527
[4] Geng J, Hou W H, Lv Y N, Zhu J J, Chen H Y 2005 Inorg. Chem. 44 8503
[5] Cao S H, Guo C F, Lv Y, Guo Y J, Liu Q 2009 Nanotechnology 20 275702-1
[6] Wu S J, Wang C, Cui Y F, Hao W C, Wang T M, Brault P 2011 Mater. Lett. 65 1344
[7] Zhang K L, Liu C M, Huang F Q, Zheng C, Wang W D 2006 Appl. Catal. B: Environ. 68 125
[8] Wu S J, Wang C, Cui Y F, Wang T M, Huang B B, Zhang X Y, Qin X Y, Brault P 2010 Mater. Lett. 64 115
[9] Ye L Q, Deng K J, Xu F, Tian L H, Peng T Y, Zan L 2012 Phys. Chem. Chem. Phys. 14 82
[10] Gao F D, Zeng D W, Huang Q W, Tian S Q, Xie C S 2012 Phys. Chem. Chem. Phys. 14 10572
[11] Klahr B, Gimenez S, Fabregat-Santiago F, Hamann T, Bisquert J 2012 J. Am. Chem. Soc. 134 4294
[12] Huang L, Yang J H, Wang X L, Han J F, Han H X, Li C 2013 Phys. Chem. Chem. Phys. 15 553
[13] Xiang Q J, Yu J G 2011 Chin. J. Catal. 32 525
[14] Pan J, Liu G, Lu G Q, Cheng H M 2011 Angew. Chem. Int. Ed. 50 2133
[15] Bi Y P, Ouyang S X, Umezawa N, Cao J Y, Ye J H 2011 J. Am. Chem. Soc. 133 6490
[16] Yang H G, Liu G, Qiao S Z, Sun C H, Jin Y G, Smith S C, Zou J, Cheng H M, Lu G Q 2009 J. Am. Chem. Soc. 131 4078
[17] Wei P Y, Yang Q L, Guo L 2009 Prog. Chem. 21 1734 (in Chinese) [魏平玉, 杨青林, 郭林2009化学进展 21 1734]
[18] Ye L Q, Zan L, Tian L H, Peng T Y 2011 Chem. Commun. 47 6951
[19] Wang C H, Zhang X T, Yuan B, Shao C L, Liu Y C 2012 Micro Nano Lett. 7 152
[20] Jiang J, Zhao K, Xiao X Y, Zhang L Z 2012 J. Am. Chem. Soc. 134 4473
[21] Zhang H J, Liu L, Zhou Z 2012 Rsc. Adv. 2 9224
[22] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.: Condens. Matter 14 2717
[23] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[24] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188
[25] Pulay P 1969 Mol. Phys. 17 197
[26] Shanno D F, Phua K H 1978 Math. Program. 14 149
[27] Bannister F A 1934 Nature 134 856
[28] Huang W L, Zhu Q S 2008 Comput. Mater. Sci. 43 1101
[29] Zhang X C, Zhao L J, Fan C M, Liang Z H, Han P D 2012 Comput. Mater. Sci. 61 180
[30] Zhang X C, Zhao L J, Fan C M, Liang Z H, Han P D 2012 Physica B 407 4416
[31] Stampfl C, van de Walle C G 1999 Phys. Rev. B 59 5521
[32] Shen Y B, Zhou X, Xu M, Ding Y C, Duan M Y, Linghu R F, Zhu W J 2007 Acta Phys. Sin. 56 3440 (in Chinese) [沈益斌, 周勋, 徐明, 丁迎春, 段满益, 令狐荣锋, 祝文军 2007 物理学报 56 3440]
[33] Zhang H J, Liu L, Zhou Z 2012 Phys. Chem. Chem. Phys. 14 1286
[34] Ma X G, Tang C Q, Huang J Q, Hu L F, Xue X, Zhou W B 2006 Acta Phys. Sin. 55 4208 (in Chinese) [马新国, 唐超群, 黄金球, 胡连峰, 薛霞, 周文斌 2006 物理学报 55 4208]
[35] Ma J X, Jia Y, Liang E J, Wang X C, Wang F, Hu X 2003 Acta Phys. Sin. 52 3155 (in Chinese) [马健新, 贾瑜, 梁二军, 王晓春, 王飞, 胡行 2003 物理学报 52 3155]
[36] Du Y J, Chang B K, Zhang J J, Li B, Wang X H 2012 Acta Phys. Sin. 61 067101 (in Chinese) [杜玉杰, 常本康, 张俊举, 李飙, 王晓晖 2012 物理学报 61 067101]
[37] Lu H L, Xu M, Chen W, Ren J, Ding S J, Zhang W 2006 Acta Phys. Sin. 55 1374 (in Chinese) [卢红亮, 徐敏, 陈玮, 任杰, 丁士进, 张卫 2006 物理学报 55 1374]
[38] Sambrano J R, Longo V M, Longo E, Taft C A 2007 J. Mol. Struct.: Theochem 813 49
[39] Cui J, Liu W 2010 Physica B 405 4687
[40] Zhou K B, Li Y D 2012 Angew. Chem. Int. Ed. 51 602
-
[1] Deng Z T, Tang F Q, Muscat A J 2008 Nanotechnology 19 295705-1
[2] Kusainova A M, Lightfoot P, Zhou W Z, Stefanovich S Y, Mosunov A V, Dolgikh V A 2001 Chem. Mater. 13 4731
[3] Charkin D O, Berdonosv P S, Moisejev A M, Shagiakhmetov R R, Dolgikh V A, Lightfoot P 1999 J. Solid. State. Chem. 147 527
[4] Geng J, Hou W H, Lv Y N, Zhu J J, Chen H Y 2005 Inorg. Chem. 44 8503
[5] Cao S H, Guo C F, Lv Y, Guo Y J, Liu Q 2009 Nanotechnology 20 275702-1
[6] Wu S J, Wang C, Cui Y F, Hao W C, Wang T M, Brault P 2011 Mater. Lett. 65 1344
[7] Zhang K L, Liu C M, Huang F Q, Zheng C, Wang W D 2006 Appl. Catal. B: Environ. 68 125
[8] Wu S J, Wang C, Cui Y F, Wang T M, Huang B B, Zhang X Y, Qin X Y, Brault P 2010 Mater. Lett. 64 115
[9] Ye L Q, Deng K J, Xu F, Tian L H, Peng T Y, Zan L 2012 Phys. Chem. Chem. Phys. 14 82
[10] Gao F D, Zeng D W, Huang Q W, Tian S Q, Xie C S 2012 Phys. Chem. Chem. Phys. 14 10572
[11] Klahr B, Gimenez S, Fabregat-Santiago F, Hamann T, Bisquert J 2012 J. Am. Chem. Soc. 134 4294
[12] Huang L, Yang J H, Wang X L, Han J F, Han H X, Li C 2013 Phys. Chem. Chem. Phys. 15 553
[13] Xiang Q J, Yu J G 2011 Chin. J. Catal. 32 525
[14] Pan J, Liu G, Lu G Q, Cheng H M 2011 Angew. Chem. Int. Ed. 50 2133
[15] Bi Y P, Ouyang S X, Umezawa N, Cao J Y, Ye J H 2011 J. Am. Chem. Soc. 133 6490
[16] Yang H G, Liu G, Qiao S Z, Sun C H, Jin Y G, Smith S C, Zou J, Cheng H M, Lu G Q 2009 J. Am. Chem. Soc. 131 4078
[17] Wei P Y, Yang Q L, Guo L 2009 Prog. Chem. 21 1734 (in Chinese) [魏平玉, 杨青林, 郭林2009化学进展 21 1734]
[18] Ye L Q, Zan L, Tian L H, Peng T Y 2011 Chem. Commun. 47 6951
[19] Wang C H, Zhang X T, Yuan B, Shao C L, Liu Y C 2012 Micro Nano Lett. 7 152
[20] Jiang J, Zhao K, Xiao X Y, Zhang L Z 2012 J. Am. Chem. Soc. 134 4473
[21] Zhang H J, Liu L, Zhou Z 2012 Rsc. Adv. 2 9224
[22] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.: Condens. Matter 14 2717
[23] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[24] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188
[25] Pulay P 1969 Mol. Phys. 17 197
[26] Shanno D F, Phua K H 1978 Math. Program. 14 149
[27] Bannister F A 1934 Nature 134 856
[28] Huang W L, Zhu Q S 2008 Comput. Mater. Sci. 43 1101
[29] Zhang X C, Zhao L J, Fan C M, Liang Z H, Han P D 2012 Comput. Mater. Sci. 61 180
[30] Zhang X C, Zhao L J, Fan C M, Liang Z H, Han P D 2012 Physica B 407 4416
[31] Stampfl C, van de Walle C G 1999 Phys. Rev. B 59 5521
[32] Shen Y B, Zhou X, Xu M, Ding Y C, Duan M Y, Linghu R F, Zhu W J 2007 Acta Phys. Sin. 56 3440 (in Chinese) [沈益斌, 周勋, 徐明, 丁迎春, 段满益, 令狐荣锋, 祝文军 2007 物理学报 56 3440]
[33] Zhang H J, Liu L, Zhou Z 2012 Phys. Chem. Chem. Phys. 14 1286
[34] Ma X G, Tang C Q, Huang J Q, Hu L F, Xue X, Zhou W B 2006 Acta Phys. Sin. 55 4208 (in Chinese) [马新国, 唐超群, 黄金球, 胡连峰, 薛霞, 周文斌 2006 物理学报 55 4208]
[35] Ma J X, Jia Y, Liang E J, Wang X C, Wang F, Hu X 2003 Acta Phys. Sin. 52 3155 (in Chinese) [马健新, 贾瑜, 梁二军, 王晓春, 王飞, 胡行 2003 物理学报 52 3155]
[36] Du Y J, Chang B K, Zhang J J, Li B, Wang X H 2012 Acta Phys. Sin. 61 067101 (in Chinese) [杜玉杰, 常本康, 张俊举, 李飙, 王晓晖 2012 物理学报 61 067101]
[37] Lu H L, Xu M, Chen W, Ren J, Ding S J, Zhang W 2006 Acta Phys. Sin. 55 1374 (in Chinese) [卢红亮, 徐敏, 陈玮, 任杰, 丁士进, 张卫 2006 物理学报 55 1374]
[38] Sambrano J R, Longo V M, Longo E, Taft C A 2007 J. Mol. Struct.: Theochem 813 49
[39] Cui J, Liu W 2010 Physica B 405 4687
[40] Zhou K B, Li Y D 2012 Angew. Chem. Int. Ed. 51 602
引用本文: |
Citation: |
计量
- 文章访问数: 1917
- PDF下载量: 905
- 被引次数: 0