搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光散射聚集速率测定中T矩阵方法的应用

米利 周宏伟 孙祉伟 刘丽霞 徐升华

引用本文:
Citation:

光散射聚集速率测定中T矩阵方法的应用

米利, 周宏伟, 孙祉伟, 刘丽霞, 徐升华

The use of T-matrix method for determining coagulation rate of colloidal particles in light scattering measurement

Mi Li, Zhou Hong-Wei, Sun Zhi-Wei, Liu Li-Xia, Xu Sheng-Hua
PDF
导出引用
  • 聚集速率是评估胶体体系特性及稳定性的关键参数, 静态光散射和动态光散射则是测量聚集速率的两个重要方法. 然而, 用静态光散射和动态光散射测量聚集速率时, 需要知道有关单粒子和双粒子聚集体光散射特性的数据. 为此, 通常需要把动、静两种方法结合, 才能消去这个数据. 以前各种近似理论曾用来解决这个问题, 但因粒子尺寸和形状的限制, 结果并不理想. 而T矩阵方法可以不受粒子大小和形状的限制计算其光散射特性. 本工作用T矩阵方法直接计算静态光散射和动态光散射所必须的粒子散射特性, 并将该法得到的聚集速率与动静态光散射结合法得到的聚集速率进行了比较, 两者结果很接近. 本工作为简化静态光散射和动态光散射测量聚集速率, 扩展其应用范围开辟了新途径.
    The coagulation rate is an important parameter for colloids, which is very useful for evaluating the colloidal stability. Both static light scattering and dynamic light scattering are commonly used methods for measuring the coagulation rate. By using these methods, the light scattering properties of single particles and aggregates of two particles are needed. Therefore, one may need both the static and dynamic light scattering data to avoid the calculation of the relevant scattering properties. Usually, when only static or dynamic light scattering data are available, various approximations are used to solve the problems related to the light scattering properties of particles and aggregates. However, due to the limitation of size and shape of colloidal particles in these approximations, the results were not always satisfactory. Since the T-matrix method can be used to precisely calculate the characteristic of light scattering without approximation of particle size or shape, we use this method in the determination of coagulation rate in static or dynamic light scattering measurement in this study. The comparison of our results with those measured by simultaneous static and dynamic light scattering method confirms that the T-matrix method is suitable for the light scattering measurement of coagulation rate. Therefore, this study simplifies the coagulation rate measurement by light scattering methods and extends their applications.
    • 基金项目: 国家自然科学基金(批准号: 10972217, 11172302, 11032011)和中国科学院创新工程(批准号: KJCX2-YW-L08)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 10972217, 11172302, 11032011), and the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KJCX2-YW-L08).
    [1]

    Arora A K, Tata B V R 1998 Advances in Colloid and Interface Science 49 97

    [2]

    Vincent B 1992 Adv. in Colloid Interface Sci. 42 279

    [3]

    Sun Z W, Xu S H, Dai G L, Li Y M, Lou L R, Liu Q S, Zhu R Z 2003 J. Chem. Phys. 119 2399

    [4]

    Sun Z W, Xu S H, Liu J, Li Y, Lou L R, Xie J C 2005 J. Chem. Phys. 122 184904

    [5]

    Elimelech M, Gregory J, Jia X, Williams R A 1995 Particle Deposition & Aggregation (1st. Edn.) (Oxford: Butterworth-Heinemann) p441

    [6]

    Yu W L, Matijevic E, Borkovec M 2002 Langmuir 18 7853

    [7]

    Kim A Y, Berg J C 2000 J. Colloid Interface Sci. 229 607

    [8]

    Xu S H, Sun Z W 2011 Soft Matter 11298-11308

    [9]

    Sun Z W, J L, Xu S H 2006 Langmuir 22 4946

    [10]

    Folkersma R, van Diemen A J G, Stein H N 1998 J. Colloid Interface Sci. 206 482

    [11]

    Xu S H, J L, Sun Z W 2006 J. Colloid Interface Sci. 304 107

    [12]

    Mishchenko M I, Travis L D, Lacis A A 2002 Scattering Absorption,and Emission of Light by Small Particles (Cambridge University Press: 1st,Ed.) (Cambridge, U.K) p439

    [13]

    Quirantes A, Delgado A 2003 J. Quant. Spectrosc. Radiat. Transfer. 78 179

    [14]

    Mackowski D W 1994 J. Opt. Soc. Am. A 11 2851

    [15]

    Holthoff H, Egelhaaf S U, Borkovec M, Schurtenberger P, Sticher H 1996 Langmuir 12 5541

    [16]

    Lin W, Galletto P, Borkovec M 2004 Langmuir 20 7465

    [17]

    Galletto P, Lin W, Borkovec M 2005 Phys. Chem. Chem. Phys. 7 1464

    [18]

    Mulholland G W, Bohren C F, Fuller K A 1994 Langmuir 10 2533

    [19]

    Holthoff H, Borkovec M, Schurtenberger P 1997 Phys. Rev. E 6945 6953

    [20]

    John H, Howard B 1983 Low Reynolds Number Hydrodynamics: With Special Applications To Particulate Media (1st. Edn.) (Netherland: Springer) p543

    [21]

    Matthaus W 1974 Beitr Meereskd 33 73

    [22]

    Nikolov I D, Ivanov C D 2000 Appl. Opt. 39 2067

  • [1]

    Arora A K, Tata B V R 1998 Advances in Colloid and Interface Science 49 97

    [2]

    Vincent B 1992 Adv. in Colloid Interface Sci. 42 279

    [3]

    Sun Z W, Xu S H, Dai G L, Li Y M, Lou L R, Liu Q S, Zhu R Z 2003 J. Chem. Phys. 119 2399

    [4]

    Sun Z W, Xu S H, Liu J, Li Y, Lou L R, Xie J C 2005 J. Chem. Phys. 122 184904

    [5]

    Elimelech M, Gregory J, Jia X, Williams R A 1995 Particle Deposition & Aggregation (1st. Edn.) (Oxford: Butterworth-Heinemann) p441

    [6]

    Yu W L, Matijevic E, Borkovec M 2002 Langmuir 18 7853

    [7]

    Kim A Y, Berg J C 2000 J. Colloid Interface Sci. 229 607

    [8]

    Xu S H, Sun Z W 2011 Soft Matter 11298-11308

    [9]

    Sun Z W, J L, Xu S H 2006 Langmuir 22 4946

    [10]

    Folkersma R, van Diemen A J G, Stein H N 1998 J. Colloid Interface Sci. 206 482

    [11]

    Xu S H, J L, Sun Z W 2006 J. Colloid Interface Sci. 304 107

    [12]

    Mishchenko M I, Travis L D, Lacis A A 2002 Scattering Absorption,and Emission of Light by Small Particles (Cambridge University Press: 1st,Ed.) (Cambridge, U.K) p439

    [13]

    Quirantes A, Delgado A 2003 J. Quant. Spectrosc. Radiat. Transfer. 78 179

    [14]

    Mackowski D W 1994 J. Opt. Soc. Am. A 11 2851

    [15]

    Holthoff H, Egelhaaf S U, Borkovec M, Schurtenberger P, Sticher H 1996 Langmuir 12 5541

    [16]

    Lin W, Galletto P, Borkovec M 2004 Langmuir 20 7465

    [17]

    Galletto P, Lin W, Borkovec M 2005 Phys. Chem. Chem. Phys. 7 1464

    [18]

    Mulholland G W, Bohren C F, Fuller K A 1994 Langmuir 10 2533

    [19]

    Holthoff H, Borkovec M, Schurtenberger P 1997 Phys. Rev. E 6945 6953

    [20]

    John H, Howard B 1983 Low Reynolds Number Hydrodynamics: With Special Applications To Particulate Media (1st. Edn.) (Netherland: Springer) p543

    [21]

    Matthaus W 1974 Beitr Meereskd 33 73

    [22]

    Nikolov I D, Ivanov C D 2000 Appl. Opt. 39 2067

  • [1] 王月洋, 尹俊豪, 严康, 林钦宁, 庞仁君, 王泽森, 杨涛, 印建平. 基于多能级速率方程的CaH分子三维磁光囚禁模型. 物理学报, 2022, 71(16): 163701. doi: 10.7498/aps.71.20220304
    [2] 杨佳琦, 刘加东, 刘涛, 张志忠. 激发光线宽对原子光致漂移速率的影响. 物理学报, 2018, 67(11): 113201. doi: 10.7498/aps.67.20180375
    [3] 张颖, 郑宇, 何茂刚. 对利用动态光散射法测量颗粒粒径和液体黏度的改进. 物理学报, 2018, 67(16): 167801. doi: 10.7498/aps.67.20180271
    [4] 张肃, 彭杰, 战俊彤, 付强, 段锦, 姜会林. 非球形椭球粒子参数变化对光偏振特性的影响. 物理学报, 2016, 65(6): 064205. doi: 10.7498/aps.65.064205
    [5] 张学海, 魏合理, 戴聪明, 曹亚楠, 李学彬. 取向比对椭球气溶胶粒子散射特性的影响. 物理学报, 2015, 64(22): 224205. doi: 10.7498/aps.64.224205
    [6] 崔帅, 张晓娟, 方广有. 基于递归T矩阵的离散随机散射体散射特性研究. 物理学报, 2014, 63(15): 154202. doi: 10.7498/aps.63.154202
    [7] 孙悟, 邓小玖, 李耀东, 张永明, 郑赛晶, 王维妙. 双波长抗干扰光电感烟探测机理. 物理学报, 2013, 62(3): 030201. doi: 10.7498/aps.62.030201
    [8] 范萌, 陈良富, 李莘莘, 陶金花, 苏林, 邹铭敏, 张莹, 韩冬. 非球形气溶胶粒子短波红外散射特性研究. 物理学报, 2012, 61(20): 204202. doi: 10.7498/aps.61.204202
    [9] 张启兴, 李耀东, 邓小玖, 张永明. 火灾烟雾颗粒532 nm光散射矩阵实验研究. 物理学报, 2011, 60(8): 084216. doi: 10.7498/aps.60.084216
    [10] 孙贤明, 王海华, 申晋, 王淑君. 随机取向双层椭球粒子偏振散射特性研究. 物理学报, 2011, 60(11): 114216. doi: 10.7498/aps.60.114216
    [11] 何进春, 陈宗蕴, 黄念宁. 求解DNLS方程的反散射法的基本问题. 物理学报, 2009, 58(9): 6063-6067. doi: 10.7498/aps.58.6063
    [12] 胡明亮, 惠小强. 计算自旋-s算子幺正演化矩阵ds(t)的新方法及其应用. 物理学报, 2008, 57(6): 3319-3323. doi: 10.7498/aps.57.3319
    [13] 游 泳, 刘义保, 邓玲娜, 李 群. 电子与钠原子散射的S, T, U参数研究. 物理学报, 2007, 56(4): 2073-2078. doi: 10.7498/aps.56.2073
    [14] 夏志林, 范正修, 邵建达. 激光作用下薄膜中的电子-声子散射速率. 物理学报, 2006, 55(6): 3007-3012. doi: 10.7498/aps.55.3007
    [15] 李志宏, 孙继红, 赵军平, 吴东, 孙予罕, 柳义, 生文君, 董宝中. 用小角X射线散射法研究溶胶结构. 物理学报, 2000, 49(4): 775-780. doi: 10.7498/aps.49.775
    [16] 袁乃荣, 邬鸿彦, 李 铮, 邱庆春. T1uhg Jahn-Teller系统中的频率约化矩阵. 物理学报, 2000, 49(9): 1769-1777. doi: 10.7498/aps.49.1769
    [17] 许宗荣, 高艳玲. 量子散射跃迁矩阵元的双线性变分法. 物理学报, 1995, 44(1): 24-28. doi: 10.7498/aps.44.24
    [18] 潘多海, 郇宜贤, 傅克德, 张鹏翔. 聚集体分子的基频和高阶线性Raman散射研究. 物理学报, 1992, 41(7): 1196-1203. doi: 10.7498/aps.41.1196
    [19] 范海福, 韩福森, 郑启泰, 古元新. 反常散射法同直接法的结合. 物理学报, 1981, 30(1): 130-132. doi: 10.7498/aps.30.130
    [20] 侯伯宇. 散射矩阵的角分布不变变换群. 物理学报, 1964, 20(7): 691-695. doi: 10.7498/aps.20.691
计量
  • 文章访问数:  4840
  • PDF下载量:  392
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-12-05
  • 修回日期:  2013-03-14
  • 刊出日期:  2013-07-05

/

返回文章
返回