搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

K,Na掺杂Cu-S纳米晶的水热合成及对结构、性能的影响

万步勇 苑进社 冯庆 王奥

K,Na掺杂Cu-S纳米晶的水热合成及对结构、性能的影响

万步勇, 苑进社, 冯庆, 王奥
PDF
导出引用
导出核心图
  • 利用水热合成技术, 分别以CuCl22H2O, 硫粉为铜源和硫源, 以KOH或NaOH为矿化剂, 成功合成了Cu2S纳米晶体和碱金属离子掺杂的KCu7S4纳米线和NaCu5S3 微纳米球. 通过X射线衍射(XRD)、电子能谱(EDS)、扫描电镜(SEM)、透射电镜(TEM)和高分辨率透射电镜 (HRTEM) 对产物的结构和形貌进行了表征和分析. 结果显示: KOH含量低于1g或NaOH低于2g时, 产物为斜方辉铜矿Cu2S; 高碱含量 (不低于3g) 时, K或Na离子成功掺入产物结构中, K掺杂产物为纯净的四方相KCu7S4, 单晶结构, 尺寸均匀, 长度可达几十微米的纳米线; Na掺杂未改变产物的形貌, 形成六方晶系结构的NaCu5S3. 产物的形成和生长与反应温度、反应时间和矿化剂密切相关. 并讨论了Cu2S纳米晶及其掺杂纳米晶的形成机理及掺杂机理. 最后研究了碱金属离子掺杂对产物的光学性能的影响, 漫反射光谱显示Cu2S, KCu7S4和NaCu5S3纳米晶的光学带隙分别为1.21eV, 0.49eV和0.42eV, K+和Na+的掺杂, 极大的改变了产物的光学特性.
    • 基金项目: 国家自然科学基金(批准号: 61106129, 61274128);重庆市自然科学基金(批准号: cstc2012jjA50024)和重庆市教委科技项目(批准号: KJ130603)资助的课题.
    [1]

    Liu J, Zhou W C, Zhang J F 2012 Acta Phys. Sin. 61 206101 (in Chinese) [刘军, 周伟昌, 张建福 2012 物理学报 61 206101]

    [2]

    Yang Y P, Feng S, Feng H, Pan X C, Wang Y Q, Wang W Z 2011 Acta Phys. Sin. 60 027802 (in Chinese) [杨玉平, 冯帅, 冯辉, 潘学聪, 王义全, 王文忠 2011 物理学报 60 027802]

    [3]

    Xin M, Cao W H 2010 Acta Phys. Sin. 59 5833 (in Chinese) [新梅, 曹望和 2010 物理学报 59 5833]

    [4]

    Kim H S, Sung T K, Jang S Y, Myung Y, Cho Y J, Lee C W, Park J, Ahn J P, Kim J G, Kim Y 2011 Cryst. Eng. Comm. 13 2091

    [5]

    Peng M, Ma L L, Zhang Y G, Tan M, Wang J B, Yu Y 2009 Mater. Res. Bull. 44 1834

    [6]

    Zhao F, Chen X, Xu N, Lu P 2006 J. Phys. Chem. Solids 67 1786

    [7]

    Shi J Fu, Fan Y X, Xue Q, Xu G, Chen L H 2012 Acta Phys. Chim.Sin. 28 857 (in Chinese) [史继富, 樊晔, 徐雪青, 徐刚, 陈丽华 2012 物理化学学报 28 857]

    [8]

    Tang A W, Qu S C, Li K, Hou Y B, Teng F, Cao J, Wang Y S, Wang Z G 2010 Nanotechnology 21 285602

    [9]

    Nayak A, Ohno T, Tsuruoka T, Terabe K, Hasegawa T, Gimzewski J K, Aono M 2012 Adv. Funct. Mater. 22 3606

    [10]

    Boller H 2007 J. Alloys Compd. 442 3

    [11]

    Kuo Y K, Skove M J, Verebelyi D T, Li H, Mackay R, Hwu S J, Whangbo M H, Brill J W 1997 Phys. Rev. B 57 3315

    [12]

    Brown D B, Zubieta J A, Vella P A, Wrobleski J T, Watt T, Hatfield W E, Day P 1980 Inorg. Chem. 19 1945

    [13]

    Whangbo M H, Canadell E 1992 Solid State Commun. 81 895

    [14]

    Noren L, Berger R, Lidin S, Eriksson L, Huster J 1998 J. Alloys Compd. 281 186

    [15]

    Hwu S J, Li H, Mackay R, Kuo Y K, Skove M J, Mahapatro M, Bucher C K, Halladay J P, Hayes M W 1998 Chem. Mater. 10 6

    [16]

    Huang L, Liu J, Zuo Z, Liu H, Liu D, Wang J, Boughton R I 2010 J. Alloys Compd. 507 429

    [17]

    Effenberger H, Pertlik F 1985 Monatsh. Chem. 116 921

    [18]

    Liu B, Zeng H C 2005 Small 1 566

    [19]

    Purdy A P 1998 Chem. Mater. 10 692

    [20]

    Peng M, Ma L L, Zhang Y G, Tan M, Wang J B, Yu Y 2009 Mater. Res. Bull. 44 1834

    [21]

    Yuan M, Mitzi D B 2009 J. Chem. Soc. Dalton Trans. 31 6078

    [22]

    Ohtani T, Ogura J, Sakai M, Sano Y 1991 Solid State Commun. 78 913

    [23]

    Effenberger H, Pertlik F 1985 Monatshefte fr Chemie 116 921

    [24]

    Li J, Chen Z, Wang X X, Proserpio D M 1997 J. Alloys Compd. 262-263 28

    [25]

    Yang M, Yang X, Huai L, Liu W 2008 Appl. Surf. Sci. 255 1750

    [26]

    Bekenstein Y, Vinokurov K, Banin U, Millo O 2012 Nanotechnology 23 505710

    [27]

    Sun D M, Wu Q S, Ding Y P 2004 J. Inorg. Mater. 19 487 (in Chinese) [孙冬梅, 吴庆生, 丁亚平 2004 无机材料学报 19 487]

  • [1]

    Liu J, Zhou W C, Zhang J F 2012 Acta Phys. Sin. 61 206101 (in Chinese) [刘军, 周伟昌, 张建福 2012 物理学报 61 206101]

    [2]

    Yang Y P, Feng S, Feng H, Pan X C, Wang Y Q, Wang W Z 2011 Acta Phys. Sin. 60 027802 (in Chinese) [杨玉平, 冯帅, 冯辉, 潘学聪, 王义全, 王文忠 2011 物理学报 60 027802]

    [3]

    Xin M, Cao W H 2010 Acta Phys. Sin. 59 5833 (in Chinese) [新梅, 曹望和 2010 物理学报 59 5833]

    [4]

    Kim H S, Sung T K, Jang S Y, Myung Y, Cho Y J, Lee C W, Park J, Ahn J P, Kim J G, Kim Y 2011 Cryst. Eng. Comm. 13 2091

    [5]

    Peng M, Ma L L, Zhang Y G, Tan M, Wang J B, Yu Y 2009 Mater. Res. Bull. 44 1834

    [6]

    Zhao F, Chen X, Xu N, Lu P 2006 J. Phys. Chem. Solids 67 1786

    [7]

    Shi J Fu, Fan Y X, Xue Q, Xu G, Chen L H 2012 Acta Phys. Chim.Sin. 28 857 (in Chinese) [史继富, 樊晔, 徐雪青, 徐刚, 陈丽华 2012 物理化学学报 28 857]

    [8]

    Tang A W, Qu S C, Li K, Hou Y B, Teng F, Cao J, Wang Y S, Wang Z G 2010 Nanotechnology 21 285602

    [9]

    Nayak A, Ohno T, Tsuruoka T, Terabe K, Hasegawa T, Gimzewski J K, Aono M 2012 Adv. Funct. Mater. 22 3606

    [10]

    Boller H 2007 J. Alloys Compd. 442 3

    [11]

    Kuo Y K, Skove M J, Verebelyi D T, Li H, Mackay R, Hwu S J, Whangbo M H, Brill J W 1997 Phys. Rev. B 57 3315

    [12]

    Brown D B, Zubieta J A, Vella P A, Wrobleski J T, Watt T, Hatfield W E, Day P 1980 Inorg. Chem. 19 1945

    [13]

    Whangbo M H, Canadell E 1992 Solid State Commun. 81 895

    [14]

    Noren L, Berger R, Lidin S, Eriksson L, Huster J 1998 J. Alloys Compd. 281 186

    [15]

    Hwu S J, Li H, Mackay R, Kuo Y K, Skove M J, Mahapatro M, Bucher C K, Halladay J P, Hayes M W 1998 Chem. Mater. 10 6

    [16]

    Huang L, Liu J, Zuo Z, Liu H, Liu D, Wang J, Boughton R I 2010 J. Alloys Compd. 507 429

    [17]

    Effenberger H, Pertlik F 1985 Monatsh. Chem. 116 921

    [18]

    Liu B, Zeng H C 2005 Small 1 566

    [19]

    Purdy A P 1998 Chem. Mater. 10 692

    [20]

    Peng M, Ma L L, Zhang Y G, Tan M, Wang J B, Yu Y 2009 Mater. Res. Bull. 44 1834

    [21]

    Yuan M, Mitzi D B 2009 J. Chem. Soc. Dalton Trans. 31 6078

    [22]

    Ohtani T, Ogura J, Sakai M, Sano Y 1991 Solid State Commun. 78 913

    [23]

    Effenberger H, Pertlik F 1985 Monatshefte fr Chemie 116 921

    [24]

    Li J, Chen Z, Wang X X, Proserpio D M 1997 J. Alloys Compd. 262-263 28

    [25]

    Yang M, Yang X, Huai L, Liu W 2008 Appl. Surf. Sci. 255 1750

    [26]

    Bekenstein Y, Vinokurov K, Banin U, Millo O 2012 Nanotechnology 23 505710

    [27]

    Sun D M, Wu Q S, Ding Y P 2004 J. Inorg. Mater. 19 487 (in Chinese) [孙冬梅, 吴庆生, 丁亚平 2004 无机材料学报 19 487]

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1663
  • PDF下载量:  1027
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-04-12
  • 修回日期:  2013-05-07
  • 刊出日期:  2013-09-05

K,Na掺杂Cu-S纳米晶的水热合成及对结构、性能的影响

  • 1. 重庆师范大学物理与电子工程学院, 重庆 400047;
  • 2. 重庆市光电功能材料重点实验室, 重庆 400047
    基金项目: 

    国家自然科学基金(批准号: 61106129, 61274128)

    重庆市自然科学基金(批准号: cstc2012jjA50024)和重庆市教委科技项目(批准号: KJ130603)资助的课题.

摘要: 利用水热合成技术, 分别以CuCl22H2O, 硫粉为铜源和硫源, 以KOH或NaOH为矿化剂, 成功合成了Cu2S纳米晶体和碱金属离子掺杂的KCu7S4纳米线和NaCu5S3 微纳米球. 通过X射线衍射(XRD)、电子能谱(EDS)、扫描电镜(SEM)、透射电镜(TEM)和高分辨率透射电镜 (HRTEM) 对产物的结构和形貌进行了表征和分析. 结果显示: KOH含量低于1g或NaOH低于2g时, 产物为斜方辉铜矿Cu2S; 高碱含量 (不低于3g) 时, K或Na离子成功掺入产物结构中, K掺杂产物为纯净的四方相KCu7S4, 单晶结构, 尺寸均匀, 长度可达几十微米的纳米线; Na掺杂未改变产物的形貌, 形成六方晶系结构的NaCu5S3. 产物的形成和生长与反应温度、反应时间和矿化剂密切相关. 并讨论了Cu2S纳米晶及其掺杂纳米晶的形成机理及掺杂机理. 最后研究了碱金属离子掺杂对产物的光学性能的影响, 漫反射光谱显示Cu2S, KCu7S4和NaCu5S3纳米晶的光学带隙分别为1.21eV, 0.49eV和0.42eV, K+和Na+的掺杂, 极大的改变了产物的光学特性.

English Abstract

参考文献 (27)

目录

    /

    返回文章
    返回