搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分子束外延制备的垂直易磁化MnAl薄膜结构和磁性

聂帅华 朱礼军 潘东 鲁军 赵建华

分子束外延制备的垂直易磁化MnAl薄膜结构和磁性

聂帅华, 朱礼军, 潘东, 鲁军, 赵建华
PDF
导出引用
导出核心图
  • 系统地研究了利用分子束外延方法在GaAs(001) 衬底上外延生长的MnAlx薄膜的结构和垂直易磁化特性随组分及生长温度的依赖关系. 磁性测试表明, 可在较大组分范围内 (0.4≤x≤1.2) 获得大矫顽力的垂直易磁化MnAlx薄膜, 然而同步辐射X射线衍射和磁性测试发现当x≤0.6时MnAl薄膜出现较多的软磁相, 当x >0.9时, MnAl薄膜晶体质量和化学有序度逐渐降低, 组分为MnAl0.9时制备的薄膜有最好的[001]取向. 随着生长温度的增加, MnAl0.9薄膜的有序度、垂直磁各向异性常数、矫顽力和剩磁比均增加, 350℃时制备的MnAl0.9薄膜化学有序度高达0.9, 其磁化强度、剩磁比、矫顽力和垂直磁各向异性常数分别为265emu/cm3、93.3%、8.3kOe (1 Oe=79.5775A/m)和7.74Merg/cm3 (1 erg=10-7J). 不含贵金属及稀土元素、良好的垂直易磁化性质、 与半导体材料结构良好的兼容性以及磁性能随不同生长条件的可调控 性使得MnAl薄膜有潜力应用于多种自旋电子学器件.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2013CB922303)和国家自然科学基金(批准号: 11127406)资助的课题.
    [1]

    Zhu Y, Cai J W 2005 Acta Phys. Sin. 54 393 (in Chinese) [竺云, 蔡建旺 2005 物理学报 54 393]

    [2]

    Feng C, Li B H, Teng J, Yang T, Yu G H 2005 Acta Phys. Sin. 54 4898 (in Chinese) [冯春, 李宝河, 滕蛟, 杨涛, 于广华 2005 物理学报 54 4898]

    [3]

    Wang H, Yang F J, Xue S X, Cao X, Wang J A, Gu H S, Zhao Z Q 2005 Acta Phys. Sin. 54 1415 (in Chinese) [王浩, 杨辅军, 薛双喜, 曹歆, 王君安, 顾豪爽, 赵子强 2005 物理学报 54 1415]

    [4]

    Weller D, Moser A, Folks L, Best M E, Lee W, Toney M F, Schwickert M, Thiele J U, Doerner M F 2001 IEEE Trans. on Magn. 36 10

    [5]

    Zhang X H 2010 Master. Dissertation (Shanghai: Fudan University) (in Chinese) [张旭辉 2010 硕士学位论文 (上海: 复旦大学)]

    [6]

    Gerhardt N C, Hovel S, Brenner C, Hofmann M R, Lo F Y, Reuter D, Wieck A D, Schuster E, Keune W, Westerholt K 2005 Appl. Phys. Lett. 87 032502

    [7]

    Tehrani S, Slaughter J M, Chen E, Durlam M, Shi J, DeHerrera M 1999 IEEE Trans. Magn. 35 2814

    [8]

    Koch A J J, Hokkeling P, Steeg M G, Vos K J 1960 J. Appl. Phys. 31 75S

    [9]

    Sakuma A 1994 J. Phys. Soc. Jpn. 63 1422

    [10]

    Park J H, Hong Y K, Bae S, Lee J J, Jalli J, Abo G S, Neveu N, Kim S G, Choi C J, Lee J G 2010 J. Appl. Phys. 107 09A731

    [11]

    Sands T, Harbison J P, Leadbeater M L, Allen S J, Hull G W, Ramesh R, Keramidas V G 1990 Appl. Phys. Lett. 57 2609

    [12]

    Lauhoff G, Bruynseraede C, De Boeck J, Van Roy W, Bland J A C, Borghs G 1997 Phys. Rev. Lett. 79 5290

    [13]

    Van Roy W, De Boeck J, Bender H, Bruynseraede C, Vanesch A, Borghs G 1995 J. Appl. Phys. 78 398

    [14]

    Hosoda M, Oogane M, Kubota M, Kubota T, Saruyama H, Iihama S, Naganuma H, Ando Y 2012 J. Appl. Phys. 111 07A324

    [15]

    Nie S H, Zhu L J, Lu J, Pan D, Wang H L, Yu X Z, Xiao J X, Zhao J H 2013 Appl. Phys. Lett. 102 152405

    [16]

    Yan Z C, Huang Y, Zhang Y C, Hadjipanayis G, Soffa W, Weller D 2005 Scr. Mater. 53 463

  • [1]

    Zhu Y, Cai J W 2005 Acta Phys. Sin. 54 393 (in Chinese) [竺云, 蔡建旺 2005 物理学报 54 393]

    [2]

    Feng C, Li B H, Teng J, Yang T, Yu G H 2005 Acta Phys. Sin. 54 4898 (in Chinese) [冯春, 李宝河, 滕蛟, 杨涛, 于广华 2005 物理学报 54 4898]

    [3]

    Wang H, Yang F J, Xue S X, Cao X, Wang J A, Gu H S, Zhao Z Q 2005 Acta Phys. Sin. 54 1415 (in Chinese) [王浩, 杨辅军, 薛双喜, 曹歆, 王君安, 顾豪爽, 赵子强 2005 物理学报 54 1415]

    [4]

    Weller D, Moser A, Folks L, Best M E, Lee W, Toney M F, Schwickert M, Thiele J U, Doerner M F 2001 IEEE Trans. on Magn. 36 10

    [5]

    Zhang X H 2010 Master. Dissertation (Shanghai: Fudan University) (in Chinese) [张旭辉 2010 硕士学位论文 (上海: 复旦大学)]

    [6]

    Gerhardt N C, Hovel S, Brenner C, Hofmann M R, Lo F Y, Reuter D, Wieck A D, Schuster E, Keune W, Westerholt K 2005 Appl. Phys. Lett. 87 032502

    [7]

    Tehrani S, Slaughter J M, Chen E, Durlam M, Shi J, DeHerrera M 1999 IEEE Trans. Magn. 35 2814

    [8]

    Koch A J J, Hokkeling P, Steeg M G, Vos K J 1960 J. Appl. Phys. 31 75S

    [9]

    Sakuma A 1994 J. Phys. Soc. Jpn. 63 1422

    [10]

    Park J H, Hong Y K, Bae S, Lee J J, Jalli J, Abo G S, Neveu N, Kim S G, Choi C J, Lee J G 2010 J. Appl. Phys. 107 09A731

    [11]

    Sands T, Harbison J P, Leadbeater M L, Allen S J, Hull G W, Ramesh R, Keramidas V G 1990 Appl. Phys. Lett. 57 2609

    [12]

    Lauhoff G, Bruynseraede C, De Boeck J, Van Roy W, Bland J A C, Borghs G 1997 Phys. Rev. Lett. 79 5290

    [13]

    Van Roy W, De Boeck J, Bender H, Bruynseraede C, Vanesch A, Borghs G 1995 J. Appl. Phys. 78 398

    [14]

    Hosoda M, Oogane M, Kubota M, Kubota T, Saruyama H, Iihama S, Naganuma H, Ando Y 2012 J. Appl. Phys. 111 07A324

    [15]

    Nie S H, Zhu L J, Lu J, Pan D, Wang H L, Yu X Z, Xiao J X, Zhao J H 2013 Appl. Phys. Lett. 102 152405

    [16]

    Yan Z C, Huang Y, Zhang Y C, Hadjipanayis G, Soffa W, Weller D 2005 Scr. Mater. 53 463

  • 引用本文:
    Citation:
计量
  • 文章访问数:  2278
  • PDF下载量:  443
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-05-03
  • 修回日期:  2013-05-20
  • 刊出日期:  2013-09-05

分子束外延制备的垂直易磁化MnAl薄膜结构和磁性

  • 1. 中国科学院半导体研究所, 半导体超晶格国家重点实验室, 北京 100083
    基金项目: 

    国家重点基础研究发展计划(批准号: 2013CB922303)和国家自然科学基金(批准号: 11127406)资助的课题.

摘要: 系统地研究了利用分子束外延方法在GaAs(001) 衬底上外延生长的MnAlx薄膜的结构和垂直易磁化特性随组分及生长温度的依赖关系. 磁性测试表明, 可在较大组分范围内 (0.4≤x≤1.2) 获得大矫顽力的垂直易磁化MnAlx薄膜, 然而同步辐射X射线衍射和磁性测试发现当x≤0.6时MnAl薄膜出现较多的软磁相, 当x >0.9时, MnAl薄膜晶体质量和化学有序度逐渐降低, 组分为MnAl0.9时制备的薄膜有最好的[001]取向. 随着生长温度的增加, MnAl0.9薄膜的有序度、垂直磁各向异性常数、矫顽力和剩磁比均增加, 350℃时制备的MnAl0.9薄膜化学有序度高达0.9, 其磁化强度、剩磁比、矫顽力和垂直磁各向异性常数分别为265emu/cm3、93.3%、8.3kOe (1 Oe=79.5775A/m)和7.74Merg/cm3 (1 erg=10-7J). 不含贵金属及稀土元素、良好的垂直易磁化性质、 与半导体材料结构良好的兼容性以及磁性能随不同生长条件的可调控 性使得MnAl薄膜有潜力应用于多种自旋电子学器件.

English Abstract

参考文献 (16)

目录

    /

    返回文章
    返回