搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

荧光粉CaWO4:Eu3+中WO42-与Eu3+间的能量转递

梁锋 胡义华 陈丽 王小涓

荧光粉CaWO4:Eu3+中WO42-与Eu3+间的能量转递

梁锋, 胡义华, 陈丽, 王小涓
PDF
导出引用
导出核心图
  • 通过高温固相法分别制备了CaWO4和CaWO4:1%Eu3+ 样品. 测量了样品不同温度(10–300 K)的荧光光谱、荧光衰减曲线和 时间分辨荧光光谱. 样品的荧光光谱表明: 在240 nm紫外光激发下, 两个样品在430 nm处都展现出来源于WO42-的蓝色发射; 样品CaWO4:Eu3+的Eu3+(5D0→7F1, 2, 3,4)的特征发射则归属于WO42-到Eu3+ 间的能量传递.由样品室温(300K)荧光衰减曲线发现: 纯CaWO4的荧光寿命为8.85μs,Eu3+掺杂之后WO42-的荧光寿命缩短至6.27μs,这从另一方面证明了WO42-与Eu3+间能量传递的存在. 由荧光寿命得到T=300K时, CaWO4: 1%Eu3+中WO42-与Eu3+间的能量传递效率(ηET)为29.2%, 能量传递速率(ωET)为4.65×104 s-1.通过时间分辨荧光光谱, 获得了从WO42-到Eu3+之间的能量传递的时间演变过程,当温度由10 K增加到300 K时, 能量传递出现的时间单调变小. 测试了不同温度(10–300 K)对CaWO4:Eu3+的荧光寿命的影响, 发现在10–50K时,Eu3+的荧光寿命增加, 但温度超过50K时发生猝灭, 荧光寿命开始下降; WO42-的荧光寿命则是随着温度的升高逐渐缩短.
    • 基金项目: 国家自然科学基金(批准号:21271049)资助的课题.
    [1]

    Su Q, Wu H, Pan Y X, Xu J, Guo C F, Zhang X M, Zhang J H, Wang J, Zhang M 2005 J. Rare Earth Soc. 5 513 (in Chinese) [苏锵, 吴昊, 潘跃晓, 徐剑, 郭崇峰, 张新民, 张剑辉, 王静, 张梅 2005 中国稀土学报 5 513]

    [2]

    Cao R P, Peng M Y, Qiu J R 2012 Opt. Express 20 977

    [3]

    Ju G F, Hu Y H, Wu H Y, Yang Z F, Fu C J, Mu Z F, Kang F W 2011 Opt. Mater. 33 1297

    [4]

    Guo C F, Xu Y, L F, Ding X 2010 J. Alloy. Compd. 497 21

    [5]

    Mu Z F, Wang Y H, Hu Y H, Wu H Y, Deng L Y, Xie W, Fu C J, Liao C X 2011 Acta Phys. Sin. 60 013201 (in Chinese) [牟中飞, 王银海, 胡义华, 吴浩怡, 邓柳咏, 谢伟, 符楚君, 廖臣兴 2011 物理学报 60 013201]

    [6]

    Li X, Guan L, An J Y, Jin L T, Yang Z P, Yang Y M, Li P L, Fu G S 2011 Chin. Phys. Lett. 28 027805

    [7]

    Mu Z F, Hu Y H, Chen L, Wang X J 2011 J. Lumin. 131 1687

    [8]

    Kang F W, Hu Y H, Wu H Y, Ju G F, Mu Z F, Li N N 2011 J. Rare Earths 29 837

    [9]

    Zhang J H, Zhu D Q, Wang J X 2012 Semicond. Optoelectron. 33 667 (in Chinese) [张锦华, 朱大庆, 王加贤 2012 半导体光电 33 667]

    [10]

    Li Y Q, Steen J, Krevel J, Botty G, Delsing A, DiSalvo F, With G, Hintzen H 2006 J. Alloy. Compd. 417 273

    [11]

    Yang J J, Wang T, Chen D C, Chen G D, Liu Q L 2012 Mater. Sci. Eng. B 177 1596

    [12]

    Kang F W, Hu Y H, Chen L, Wang X J, Wu H Y, Mu Z F 2013 J. Lumin. 135 113

    [13]

    Spassky D, Mikhailin V, Nazarov M, Ahmad-Fauzi M, Zhbanov A 2012 J. Lumin. 132 2753

    [14]

    Wang W X, Pang P P, Cheng Z Y, Hou Z Y, Li C X, Lin 2011 ACS Appl. Mater. Inter. 3 3921

    [15]

    Treadaway M J, Powell R C 1974 J. Chem. Phys. 61 4003

    [16]

    Kang F W, Hu Y H, Wu H Y, Ju G F 2011 Chin. Phys. Lett. 28 107201

    [17]

    Zorenko Y, Pashkovsky M, Voloshinovskii A, Kuklinski B 2006 J. Lumin. 116 43

    [18]

    Wu H Y, Hu Y H, Kang F W, Li N N, Ju G F, Mu Z F, Yang Z F 2012 J. Am. Ceram. Soc. 95 3214

    [19]

    Wu H Y, Hu Y H, Kang F W, Chen L, Wang X J, Ju G F, Mu Z F 2011 Mater. Res. Bull. 46 2489

    [20]

    Jin Y H, Hu Y H, Chen L, Wang X J, Mu Z F, Wu H Y, Ju G F 2013 Radiat. Meas. 51-52 18

    [21]

    Yang P P, Quan Z W, Li C X, Lian H Z, Huang S S, Lin J 2008 Micropor. Mesop. Mat. 116 524

    [22]

    Gao Y, L Q, Wang Y, Liu Z B 2012 Acta Phys. Sin. 61 078802 (in Chinese) [高杨, 吕强, 汪洋, 刘占波 2012 物理学报 61 078802]

    [23]

    Meng Q Y, Zhang Q, Li M, Liu L F, Qu X R, Wan W L, Sun J T 2012 Acta Phys. Sin. 61 107804 (in Chinese) [孟庆裕, 张庆, 李明, 刘林峰, 曲秀荣, 万维龙, 孙江亭 2012 物理学报 61 107804]

    [24]

    Liu Z W, Liu Y L, Yuan D S, Zhang J X, Rong J H, Huang L H 2004 J. Inorg. Chem. 20 1433 (in Chinese) [刘正伟, 刘应亮, 袁定胜, 张静娴, 容建华, 黄浪欢 2004 无机化学学报 20 1433]

    [25]

    Kang F W, Hu Y H, Chen L, Wang X J, Wu H Y 2012 Appl. Phys. B 107 833

    [26]

    Kang F W, Hu Y H, Chen L, Wang X J, Wu H Y 2013 Mater. Sci. Eng. B 178 477

    [27]

    Kang F W, Hu Y H, Wu H Y, Mu Z F, Ju G F, Fu C J, Li N N 2012 J. Lumin. 132 887

    [28]

    Wu H Y, Hu Y H, Kang F W, Li N N 2012 J. Mater. Res. 27 959

    [29]

    Shi S K, Gao J, Zhou 2008 Opt. Mater. 30 1616

    [30]

    Peterson R G, Richard C. 1978 J. Lumin. 16 285

    [31]

    Shannon R D 1976 Acta Crystallogr A 32 751

    [32]

    Nazarov M V, Tsukerblat B S, Popovici E J, Jeon D Y J 2004 Phys. Lett. A 330 291

    [33]

    Blasse G 1973 Chem. Phys. Lett. 20 573

    [34]

    Hebbink G A, Grave L, Woldering L A, Reinhoudt D N, van Veggel F C M J 2003 J. Phys. Chem. 107 2483

    [35]

    Vergeer P, Vlugt T J H, Kox M H F, Den Hertog M I, van der Eerden J P J M, Meijerink A 2005 Phys. Rev. B 71 014119

    [36]

    Paulose P I, Jose G, Thomas V, Unnikrishnan N V, Warrier M K R 2003 J. Phys. Chem. Solids 64 841

    [37]

    Balaji S, Mandal A K, Annapurna K 2012 Opt. Mater. 34 1930

    [38]

    Treadaway M J, Powell R C 1975 Phys. Rev. B 11 862

    [39]

    Peng H S, Song H W, Chen B J, Wang J W, Lu S Z 2003 J. Chem. Phys. 118 3277

    [40]

    Song H W, Yu L X, Lu S Z, Wang T, Liu Z X 2004 Appl. Phys. Lett. 85 470

    [41]

    Riwotzki K, Haase M 2001 J. Phys. Chem. 105 12709

  • [1]

    Su Q, Wu H, Pan Y X, Xu J, Guo C F, Zhang X M, Zhang J H, Wang J, Zhang M 2005 J. Rare Earth Soc. 5 513 (in Chinese) [苏锵, 吴昊, 潘跃晓, 徐剑, 郭崇峰, 张新民, 张剑辉, 王静, 张梅 2005 中国稀土学报 5 513]

    [2]

    Cao R P, Peng M Y, Qiu J R 2012 Opt. Express 20 977

    [3]

    Ju G F, Hu Y H, Wu H Y, Yang Z F, Fu C J, Mu Z F, Kang F W 2011 Opt. Mater. 33 1297

    [4]

    Guo C F, Xu Y, L F, Ding X 2010 J. Alloy. Compd. 497 21

    [5]

    Mu Z F, Wang Y H, Hu Y H, Wu H Y, Deng L Y, Xie W, Fu C J, Liao C X 2011 Acta Phys. Sin. 60 013201 (in Chinese) [牟中飞, 王银海, 胡义华, 吴浩怡, 邓柳咏, 谢伟, 符楚君, 廖臣兴 2011 物理学报 60 013201]

    [6]

    Li X, Guan L, An J Y, Jin L T, Yang Z P, Yang Y M, Li P L, Fu G S 2011 Chin. Phys. Lett. 28 027805

    [7]

    Mu Z F, Hu Y H, Chen L, Wang X J 2011 J. Lumin. 131 1687

    [8]

    Kang F W, Hu Y H, Wu H Y, Ju G F, Mu Z F, Li N N 2011 J. Rare Earths 29 837

    [9]

    Zhang J H, Zhu D Q, Wang J X 2012 Semicond. Optoelectron. 33 667 (in Chinese) [张锦华, 朱大庆, 王加贤 2012 半导体光电 33 667]

    [10]

    Li Y Q, Steen J, Krevel J, Botty G, Delsing A, DiSalvo F, With G, Hintzen H 2006 J. Alloy. Compd. 417 273

    [11]

    Yang J J, Wang T, Chen D C, Chen G D, Liu Q L 2012 Mater. Sci. Eng. B 177 1596

    [12]

    Kang F W, Hu Y H, Chen L, Wang X J, Wu H Y, Mu Z F 2013 J. Lumin. 135 113

    [13]

    Spassky D, Mikhailin V, Nazarov M, Ahmad-Fauzi M, Zhbanov A 2012 J. Lumin. 132 2753

    [14]

    Wang W X, Pang P P, Cheng Z Y, Hou Z Y, Li C X, Lin 2011 ACS Appl. Mater. Inter. 3 3921

    [15]

    Treadaway M J, Powell R C 1974 J. Chem. Phys. 61 4003

    [16]

    Kang F W, Hu Y H, Wu H Y, Ju G F 2011 Chin. Phys. Lett. 28 107201

    [17]

    Zorenko Y, Pashkovsky M, Voloshinovskii A, Kuklinski B 2006 J. Lumin. 116 43

    [18]

    Wu H Y, Hu Y H, Kang F W, Li N N, Ju G F, Mu Z F, Yang Z F 2012 J. Am. Ceram. Soc. 95 3214

    [19]

    Wu H Y, Hu Y H, Kang F W, Chen L, Wang X J, Ju G F, Mu Z F 2011 Mater. Res. Bull. 46 2489

    [20]

    Jin Y H, Hu Y H, Chen L, Wang X J, Mu Z F, Wu H Y, Ju G F 2013 Radiat. Meas. 51-52 18

    [21]

    Yang P P, Quan Z W, Li C X, Lian H Z, Huang S S, Lin J 2008 Micropor. Mesop. Mat. 116 524

    [22]

    Gao Y, L Q, Wang Y, Liu Z B 2012 Acta Phys. Sin. 61 078802 (in Chinese) [高杨, 吕强, 汪洋, 刘占波 2012 物理学报 61 078802]

    [23]

    Meng Q Y, Zhang Q, Li M, Liu L F, Qu X R, Wan W L, Sun J T 2012 Acta Phys. Sin. 61 107804 (in Chinese) [孟庆裕, 张庆, 李明, 刘林峰, 曲秀荣, 万维龙, 孙江亭 2012 物理学报 61 107804]

    [24]

    Liu Z W, Liu Y L, Yuan D S, Zhang J X, Rong J H, Huang L H 2004 J. Inorg. Chem. 20 1433 (in Chinese) [刘正伟, 刘应亮, 袁定胜, 张静娴, 容建华, 黄浪欢 2004 无机化学学报 20 1433]

    [25]

    Kang F W, Hu Y H, Chen L, Wang X J, Wu H Y 2012 Appl. Phys. B 107 833

    [26]

    Kang F W, Hu Y H, Chen L, Wang X J, Wu H Y 2013 Mater. Sci. Eng. B 178 477

    [27]

    Kang F W, Hu Y H, Wu H Y, Mu Z F, Ju G F, Fu C J, Li N N 2012 J. Lumin. 132 887

    [28]

    Wu H Y, Hu Y H, Kang F W, Li N N 2012 J. Mater. Res. 27 959

    [29]

    Shi S K, Gao J, Zhou 2008 Opt. Mater. 30 1616

    [30]

    Peterson R G, Richard C. 1978 J. Lumin. 16 285

    [31]

    Shannon R D 1976 Acta Crystallogr A 32 751

    [32]

    Nazarov M V, Tsukerblat B S, Popovici E J, Jeon D Y J 2004 Phys. Lett. A 330 291

    [33]

    Blasse G 1973 Chem. Phys. Lett. 20 573

    [34]

    Hebbink G A, Grave L, Woldering L A, Reinhoudt D N, van Veggel F C M J 2003 J. Phys. Chem. 107 2483

    [35]

    Vergeer P, Vlugt T J H, Kox M H F, Den Hertog M I, van der Eerden J P J M, Meijerink A 2005 Phys. Rev. B 71 014119

    [36]

    Paulose P I, Jose G, Thomas V, Unnikrishnan N V, Warrier M K R 2003 J. Phys. Chem. Solids 64 841

    [37]

    Balaji S, Mandal A K, Annapurna K 2012 Opt. Mater. 34 1930

    [38]

    Treadaway M J, Powell R C 1975 Phys. Rev. B 11 862

    [39]

    Peng H S, Song H W, Chen B J, Wang J W, Lu S Z 2003 J. Chem. Phys. 118 3277

    [40]

    Song H W, Yu L X, Lu S Z, Wang T, Liu Z X 2004 Appl. Phys. Lett. 85 470

    [41]

    Riwotzki K, Haase M 2001 J. Phys. Chem. 105 12709

  • [1] 白家豪, 郭建刚. 石墨烯/柔性基底复合结构双向界面切应力传递问题的理论研究. 物理学报, 2020, 69(5): 056201. doi: 10.7498/aps.69.20191730
    [2] 刘祥, 米文博. Verwey相变处Fe3O4的结构、磁性和电输运特性. 物理学报, 2020, 69(4): 040505. doi: 10.7498/aps.69.20191763
    [3] 廖天军, 吕贻祥. 热光伏能量转换器件的热力学极限与优化性能预测. 物理学报, 2020, 69(5): 057202. doi: 10.7498/aps.69.20191835
    [4] 刘文姝, 高润亮, 冯红梅, 刘悦悦, 黄怡, 王建波, 刘青芳. 真空磁场热处理温度对不同厚度的Ni88Cu12薄膜畴结构及磁性的影响. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191942
    [5] 汪静丽, 陈子玉, 陈鹤鸣. 基于Si3N4/SiNx/Si3N4三明治结构的偏振无关1 × 2多模干涉型解复用器的设计. 物理学报, 2020, 69(5): 054206. doi: 10.7498/aps.69.20191449
    [6] 刘丽, 刘杰, 曾健, 翟鹏飞, 张胜霞, 徐丽君, 胡培培, 李宗臻, 艾文思. 快重离子辐照对YBa2Cu3O7-δ薄膜微观结构及载流特性的影响. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191914
    [7] 梁琦, 王如志, 杨孟骐, 王长昊, 刘金伟. Al2O3衬底无催化剂生长GaN纳米线及其光学性能研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191923
    [8] 邹平, 吕丹, 徐桂英. 高压烧结制备Tb掺杂n型(Bi1–xTbx)2(Te0.9Se0.1)3合金及其微结构和热电性能. 物理学报, 2020, 69(5): 057201. doi: 10.7498/aps.69.20191561
  • 引用本文:
    Citation:
计量
  • 文章访问数:  653
  • PDF下载量:  801
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-05-23
  • 修回日期:  2013-06-14
  • 刊出日期:  2013-09-20

荧光粉CaWO4:Eu3+中WO42-与Eu3+间的能量转递

  • 1. 广东工业大学物理与光电工程学院, 广州 510006
    基金项目: 

    国家自然科学基金(批准号:21271049)资助的课题.

摘要: 通过高温固相法分别制备了CaWO4和CaWO4:1%Eu3+ 样品. 测量了样品不同温度(10–300 K)的荧光光谱、荧光衰减曲线和 时间分辨荧光光谱. 样品的荧光光谱表明: 在240 nm紫外光激发下, 两个样品在430 nm处都展现出来源于WO42-的蓝色发射; 样品CaWO4:Eu3+的Eu3+(5D0→7F1, 2, 3,4)的特征发射则归属于WO42-到Eu3+ 间的能量传递.由样品室温(300K)荧光衰减曲线发现: 纯CaWO4的荧光寿命为8.85μs,Eu3+掺杂之后WO42-的荧光寿命缩短至6.27μs,这从另一方面证明了WO42-与Eu3+间能量传递的存在. 由荧光寿命得到T=300K时, CaWO4: 1%Eu3+中WO42-与Eu3+间的能量传递效率(ηET)为29.2%, 能量传递速率(ωET)为4.65×104 s-1.通过时间分辨荧光光谱, 获得了从WO42-到Eu3+之间的能量传递的时间演变过程,当温度由10 K增加到300 K时, 能量传递出现的时间单调变小. 测试了不同温度(10–300 K)对CaWO4:Eu3+的荧光寿命的影响, 发现在10–50K时,Eu3+的荧光寿命增加, 但温度超过50K时发生猝灭, 荧光寿命开始下降; WO42-的荧光寿命则是随着温度的升高逐渐缩短.

English Abstract

参考文献 (41)

目录

    /

    返回文章
    返回