搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

溶液液滴蒸发变干的环状沉积

张文彬 廖龙光 于同旭 纪爱玲

溶液液滴蒸发变干的环状沉积

张文彬, 廖龙光, 于同旭, 纪爱玲
PDF
导出引用
导出核心图
  • 液体蒸发驱动的颗粒自组装现象在许多的工业技术中有重要应用. 本文利用显微镜观测含有颗粒物质的液滴变干后留在固体表面的颗粒形成的环状沉积图案. 采用微米粒径的SiO2小球水溶液液滴蒸发变干模拟咖啡环的形成过程, 结果发现液滴蒸发过程中接触线的钉扎是环状沉积的必要条件. 在液滴蒸发过程中颗粒随着补偿流不断的向液滴边缘移动, 聚集在接触线处形成环. 液滴蒸发变干后残留在液滴内部的颗粒数随颗粒质量分数的增加而增加, 可以达到单层的颗粒排列. 而玻璃衬底上的颗粒环在颗粒质量分数很小时, 形成单层排列, 且一排一排地生长. 蒸发过程中颗粒环由于液滴边缘的尺寸限制向液滴中心缓慢移动. 这会导致液滴中不同大小颗粒的分离.
    • 基金项目: 国家重点基础研究发展计划(批准号:2009CB930801,2012CB933002);国家自然科学基金(批准号:11290161,51172272)和中国科学院"水科学方向性项目"资助的课题.
    [1]

    Monteux C, Lequeux F 2011 Langmuir 27 2917

    [2]

    Bhardwaj R, Fang X H, Somasundaran P, Attinger D 2010 Langmuir 26 7833

    [3]

    Parneix C, Vandoolaeghe P, Nikolayev V, Quéré D, Li J, Cabane B 2010 Phys. Rev. Lett. 105 266103

    [4]

    Li J, Cabane B, Sztucki M, Gummel J, Goehring L 2012 Langmuir 28 200

    [5]

    Fischer B J 2002 Langmuir 18 60

    [6]

    Velikov K P 2002 Science 296 106

    [7]

    Chen L F, Evans J R G 2009 Langmuir 25 11299

    [8]

    Bhardwaj R, Fang X H, Attinger D 2009 New J. Phys. 11 075020

    [9]

    Keseroğlu K, Çulha M 2011 J. Colloid Interface Sci. 360 8

    [10]

    Bigioni T P, Lin X M, Nguyen T T, Corwin E I, Witten T A, Jaeger H M 2006 Nat. Mater. 5 265

    [11]

    Choi S, Stassi S, Pisano A P, Zohdi T I 2010 Langmuir 26 11690

    [12]

    Hodges C S, Ding Y L, Biggs S 2010 J.Colloid Interface Sci. 352 99

    [13]

    Kaya D, Belyi V A, Muthukumar M 2010 J. Chem. Phys. 133 114905

    [14]

    Smalyukh I I, Zribi O V, Butler J C, Lavrentovich O D, Wong G C L 2006 Phys. Rev. Lett. 96 177801

    [15]

    Yakhno T A 2011 Phys. Chem. 1 10

    [16]

    Deegan R D, Bakajin O, Dupont T F, Huber G, Nagel S R, Witten T A 1997 Nature 389 827

    [17]

    Deegan R D, Bakajin O, Dupont T F, Huber G, Nagel S R, Witten T A 2000 Phys. Rev. E 62 756

    [18]

    Yunker P J, Gratale M, Lohr M A, Still T, Lubensky T C, Yodh A G 2012 Phys. Rev. Lett. 108 228303

    [19]

    Yunker P J, Still T, Lohr M A, Yodh A G 2011 Nature 476 308

    [20]

    Hu H, Larson R G 2006 J. Phys. Chem. B 110 7090

    [21]

    Still T, Yunker P J, Yodh A G 2012 Langmuir 28 4984

    [22]

    Truskett V, Stebe K J 2003 Langmuir 19 8271

    [23]

    Ristenpart W D, Kim P G, Domingues C, Wan J, Stone H A 2007 Phys. Rev. Lett. 99 234502

    [24]

    Xu J, Xia J F, Hong S W, Lin Z Q, Qiu F, Yang Y L 2006 Phys. Rev. Lett. 96 066104

    [25]

    Berteloot G, Hoang A, Daerr A, Kavehpour H P, Lequeux F, Limat L 2012 J. Colloid Interface Sci. 370 155

    [26]

    Maheshwari S, Zhang L, Zhu Y X, Chang H C 2008 Phys. Rev. Lett. 100 044503

    [27]

    Schäffer E, W P Z 2000 Phys. Rev. E 61 5257

    [28]

    Schäffer E, Wong P Z 1998 Phys. Rev. Lett. 80 3069

    [29]

    Weon B M, Je J H 2013 Phys. Rev. Lett. 110 028303

    [30]

    Jensen K E, Pennachio D, Recht D, Weitz D A, Spaepen F 2013 Soft Matter 9 320

    [31]

    Zhang J H, Li Y F, Zhang X M, Yang B 2010 Adv. Mater. 22 4249

    [32]

    Weon B M, Je J H 2010 Phys. Rev. E 82 015305

  • [1]

    Monteux C, Lequeux F 2011 Langmuir 27 2917

    [2]

    Bhardwaj R, Fang X H, Somasundaran P, Attinger D 2010 Langmuir 26 7833

    [3]

    Parneix C, Vandoolaeghe P, Nikolayev V, Quéré D, Li J, Cabane B 2010 Phys. Rev. Lett. 105 266103

    [4]

    Li J, Cabane B, Sztucki M, Gummel J, Goehring L 2012 Langmuir 28 200

    [5]

    Fischer B J 2002 Langmuir 18 60

    [6]

    Velikov K P 2002 Science 296 106

    [7]

    Chen L F, Evans J R G 2009 Langmuir 25 11299

    [8]

    Bhardwaj R, Fang X H, Attinger D 2009 New J. Phys. 11 075020

    [9]

    Keseroğlu K, Çulha M 2011 J. Colloid Interface Sci. 360 8

    [10]

    Bigioni T P, Lin X M, Nguyen T T, Corwin E I, Witten T A, Jaeger H M 2006 Nat. Mater. 5 265

    [11]

    Choi S, Stassi S, Pisano A P, Zohdi T I 2010 Langmuir 26 11690

    [12]

    Hodges C S, Ding Y L, Biggs S 2010 J.Colloid Interface Sci. 352 99

    [13]

    Kaya D, Belyi V A, Muthukumar M 2010 J. Chem. Phys. 133 114905

    [14]

    Smalyukh I I, Zribi O V, Butler J C, Lavrentovich O D, Wong G C L 2006 Phys. Rev. Lett. 96 177801

    [15]

    Yakhno T A 2011 Phys. Chem. 1 10

    [16]

    Deegan R D, Bakajin O, Dupont T F, Huber G, Nagel S R, Witten T A 1997 Nature 389 827

    [17]

    Deegan R D, Bakajin O, Dupont T F, Huber G, Nagel S R, Witten T A 2000 Phys. Rev. E 62 756

    [18]

    Yunker P J, Gratale M, Lohr M A, Still T, Lubensky T C, Yodh A G 2012 Phys. Rev. Lett. 108 228303

    [19]

    Yunker P J, Still T, Lohr M A, Yodh A G 2011 Nature 476 308

    [20]

    Hu H, Larson R G 2006 J. Phys. Chem. B 110 7090

    [21]

    Still T, Yunker P J, Yodh A G 2012 Langmuir 28 4984

    [22]

    Truskett V, Stebe K J 2003 Langmuir 19 8271

    [23]

    Ristenpart W D, Kim P G, Domingues C, Wan J, Stone H A 2007 Phys. Rev. Lett. 99 234502

    [24]

    Xu J, Xia J F, Hong S W, Lin Z Q, Qiu F, Yang Y L 2006 Phys. Rev. Lett. 96 066104

    [25]

    Berteloot G, Hoang A, Daerr A, Kavehpour H P, Lequeux F, Limat L 2012 J. Colloid Interface Sci. 370 155

    [26]

    Maheshwari S, Zhang L, Zhu Y X, Chang H C 2008 Phys. Rev. Lett. 100 044503

    [27]

    Schäffer E, W P Z 2000 Phys. Rev. E 61 5257

    [28]

    Schäffer E, Wong P Z 1998 Phys. Rev. Lett. 80 3069

    [29]

    Weon B M, Je J H 2013 Phys. Rev. Lett. 110 028303

    [30]

    Jensen K E, Pennachio D, Recht D, Weitz D A, Spaepen F 2013 Soft Matter 9 320

    [31]

    Zhang J H, Li Y F, Zhang X M, Yang B 2010 Adv. Mater. 22 4249

    [32]

    Weon B M, Je J H 2010 Phys. Rev. E 82 015305

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1628
  • PDF下载量:  498
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-05-03
  • 修回日期:  2013-07-06
  • 刊出日期:  2013-10-05

溶液液滴蒸发变干的环状沉积

  • 1. 中国科学院物理研究所, 凝聚态物理国家实验室, 北京 100190
    基金项目: 

    国家重点基础研究发展计划(批准号:2009CB930801,2012CB933002)

    国家自然科学基金(批准号:11290161,51172272)和中国科学院"水科学方向性项目"资助的课题.

摘要: 液体蒸发驱动的颗粒自组装现象在许多的工业技术中有重要应用. 本文利用显微镜观测含有颗粒物质的液滴变干后留在固体表面的颗粒形成的环状沉积图案. 采用微米粒径的SiO2小球水溶液液滴蒸发变干模拟咖啡环的形成过程, 结果发现液滴蒸发过程中接触线的钉扎是环状沉积的必要条件. 在液滴蒸发过程中颗粒随着补偿流不断的向液滴边缘移动, 聚集在接触线处形成环. 液滴蒸发变干后残留在液滴内部的颗粒数随颗粒质量分数的增加而增加, 可以达到单层的颗粒排列. 而玻璃衬底上的颗粒环在颗粒质量分数很小时, 形成单层排列, 且一排一排地生长. 蒸发过程中颗粒环由于液滴边缘的尺寸限制向液滴中心缓慢移动. 这会导致液滴中不同大小颗粒的分离.

English Abstract

参考文献 (32)

目录

    /

    返回文章
    返回