搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双频容性耦合等离子体相分辨发射光谱诊断

杜永权 刘文耀 朱爱民 李小松 赵天亮 刘永新 高飞 徐勇 王友年

双频容性耦合等离子体相分辨发射光谱诊断

杜永权, 刘文耀, 朱爱民, 李小松, 赵天亮, 刘永新, 高飞, 徐勇, 王友年
PDF
导出引用
导出核心图
  • 采用相分辨发射光谱法, 对双频容性耦合纯Ar和不同含O2量的Ar-O2混合气体放电等离子体的鞘层激发模式进行了探究. 在射频耦合电源上极板的鞘层区域处观察到两种电子激发模式: 鞘层扩张引起的电子碰撞激发模式和二次电子引起的电子碰撞激发模式; 并发现这两种激发模式均受到低频射频电源周期的调制. 在纯Ar放电等离子体中, 两种激发模式的激发轮廓相似; 而在Ar-O2混合气放电等离子体中, 随着含O2量的增加, 二次电子的激发轮廓变弱. 此外, 利用相分辨发射光谱法对不同含O2量的Ar-O2混合气放电下Ar的 750.4 nm谱线的平均低频电源周期轴向分布进行了研究, 得到了距耦合电源上极板约3.8 mm处为双频容性耦合射频等离子体的鞘层边界.
    • 基金项目: 国家自然科学基金(批准号: 10975029)和国家重大科技专项(批准号: 2011ZX02403-001) 资助的课题.
    [1]

    Lieberman M A 2005 The 27th International Conference on Pheno-mena in Ionised Gases Eindhoven, the Netherlands, July 17-22, 2005 p6

    [2]
    [3]

    Boyle P C, Ellingboe A R, Turner M M 2004 Plasma Sour. Sci. Technol. 13 493

    [4]

    Kitajima T, Takeo Y, Petrovic Z L, Makabe T 2000 Appl. Phys. Lett. 77 489

    [5]
    [6]

    Denda T, Miyoshi Y, Komukai Y, Goto T, Petrovic Z L, Makabe T 2004 J. Appl. Phys. 95 870

    [7]
    [8]

    Kawamura E, Lieberman M A, Lichtenberg A J 2006 Phys. Plasmas 13 053506

    [9]
    [10]

    Turner M M, Chabert P 2006 Phys. Rev. Lett. 96 205001

    [11]
    [12]
    [13]

    Jiang X Z, Liu Y X, Yang S, Lu W Q, Bi Z H, Li X S, Wang Y N 2011 J. Vac. Sci. Technol. A 29 011006

    [14]

    Yuan Q H, Yin G Q, Xin Y, Ning Z Y 2011 Phys. Plasmas 18 053501

    [15]
    [16]

    Liu Y X, Zhang Q Z, Jiang W, Hou L J, Jiang X Z, Lu W Q, Wang Y N 2011 Phys. Rev. Lett. 107 055002

    [17]
    [18]
    [19]

    Schulze J, Schngel E, Donk Z, Luggenhlscher D, Czarnetzki U 2010 J. Phys. D: Appl. Phys. 43 124016

    [20]
    [21]

    de Rosny G, Mosburg E R, Abelson J R, Devaud G, Kerns R C 1983 J. Appl. Phys. 54 2272

    [22]
    [23]

    Ishimaru M, Ohba T, Ohmori T, Yagisawa T, Kitajima T, Makabe T 2008 Appl. Phys. Lett. 92 071501

    [24]
    [25]

    Mahony C M O, Graham W G 1999 IEEE Trans. Plasma Sci. 27 72

    [26]
    [27]

    Mahony C M O, Wazzan R A, Graham W G 1997 Appl. Phys. Lett. 71 608

    [28]
    [29]

    Dittmann K 2009 Ph. D. Dissertation (Greifswald: Ernst-Moritz-Arndt University of Greifswald)

    [30]

    Mutsukura N, Kobayashi K, Machi Y 1989 J. Appl. Phys. 66 4688

    [31]
    [32]

    Dittmann K, Drozdov D, Krames B, Meichsner J 2007 J. Phys. D: Appl. Phys. 40 6593

    [33]
    [34]

    Dittmann K, Matyash K, Nemschokmichal S, Meichsner J, Schneider R 2010 Contrib. Plasma. Phys. 50 942

    [35]
    [36]
    [37]

    Gans T, Der Gathen V S V, Czarnetzki U, Dobele H F 2002 Contrib. Plasma Phys. 42 596

    [38]
    [39]

    Gans T, Lin C C, Schulz von der Gathen V, Dbele H F 2003 Phys. Rev. A 67 012707

    [40]

    Gans T, Schulz von der Gathen V, Dbele H F 2004 Contrib. Plasma Phys. 44 523

    [41]
    [42]
    [43]

    Booth J P, Hancock G, Perry N D, Toogood M J 1989 J. Appl. Phys. 66 5251

    [44]
    [45]

    Gans T, Gathen V S-v d, Dbele H F 2001 Plasma Sour. Sci. Technol. 10 17

    [46]
    [47]

    Gans T, Schulze J, OConnell D, Czarnetzki U, Faulkner R, Ellingboe A R, Turner M M 2006 Appl. Phys. Lett. 89 261502

    [48]
    [49]

    Schulze J, Gans T, OConnell D, Czarnetzki U, Ellingboe A R, Turner M M 2007 J. Phys. D: Appl. Phys. 40 7008

    [50]

    Jiang X Z, Liu Y X, Bi Z H, Lu W Q, Wang Y N 2012 Acta Phys. Sin. 61 015204 (in Chinese) [蒋相站, 刘永新, 毕振华, 陆文琪, 王友年 2012 物理学报 61 015204]

    [51]
    [52]
    [53]

    National Institute of Standards and Technology Atomic Spectra Database, ASD Version 3, www.physics.nist.gov [2013]

    [54]
    [55]

    Sadeghi N, Setser D W, Francis A, Czarnetzki U, Dbele H F 2001 J. Chem. Phys. 115 3144

    [56]
    [57]

    Czarnetzki U, Luggenhlscher D, Dbele H F 1998 Plasma Sources Sci. Technol. 8 230

    [58]
    [59]

    Gans T, Lin C C, Schulz von der Gathen V, Dbele H F 2001 J. Phys. D: Appl. Phys. 34 L39

    [60]
    [61]

    Mutsukura N, Kobayashi K, Machi Y 1989 J. Appl. Phys. 66 4688

    [62]
    [63]

    Mutsukura N, Kobayashi K, Machi Y 1990 J. Appl. Phys. 68 2657

  • [1]

    Lieberman M A 2005 The 27th International Conference on Pheno-mena in Ionised Gases Eindhoven, the Netherlands, July 17-22, 2005 p6

    [2]
    [3]

    Boyle P C, Ellingboe A R, Turner M M 2004 Plasma Sour. Sci. Technol. 13 493

    [4]

    Kitajima T, Takeo Y, Petrovic Z L, Makabe T 2000 Appl. Phys. Lett. 77 489

    [5]
    [6]

    Denda T, Miyoshi Y, Komukai Y, Goto T, Petrovic Z L, Makabe T 2004 J. Appl. Phys. 95 870

    [7]
    [8]

    Kawamura E, Lieberman M A, Lichtenberg A J 2006 Phys. Plasmas 13 053506

    [9]
    [10]

    Turner M M, Chabert P 2006 Phys. Rev. Lett. 96 205001

    [11]
    [12]
    [13]

    Jiang X Z, Liu Y X, Yang S, Lu W Q, Bi Z H, Li X S, Wang Y N 2011 J. Vac. Sci. Technol. A 29 011006

    [14]

    Yuan Q H, Yin G Q, Xin Y, Ning Z Y 2011 Phys. Plasmas 18 053501

    [15]
    [16]

    Liu Y X, Zhang Q Z, Jiang W, Hou L J, Jiang X Z, Lu W Q, Wang Y N 2011 Phys. Rev. Lett. 107 055002

    [17]
    [18]
    [19]

    Schulze J, Schngel E, Donk Z, Luggenhlscher D, Czarnetzki U 2010 J. Phys. D: Appl. Phys. 43 124016

    [20]
    [21]

    de Rosny G, Mosburg E R, Abelson J R, Devaud G, Kerns R C 1983 J. Appl. Phys. 54 2272

    [22]
    [23]

    Ishimaru M, Ohba T, Ohmori T, Yagisawa T, Kitajima T, Makabe T 2008 Appl. Phys. Lett. 92 071501

    [24]
    [25]

    Mahony C M O, Graham W G 1999 IEEE Trans. Plasma Sci. 27 72

    [26]
    [27]

    Mahony C M O, Wazzan R A, Graham W G 1997 Appl. Phys. Lett. 71 608

    [28]
    [29]

    Dittmann K 2009 Ph. D. Dissertation (Greifswald: Ernst-Moritz-Arndt University of Greifswald)

    [30]

    Mutsukura N, Kobayashi K, Machi Y 1989 J. Appl. Phys. 66 4688

    [31]
    [32]

    Dittmann K, Drozdov D, Krames B, Meichsner J 2007 J. Phys. D: Appl. Phys. 40 6593

    [33]
    [34]

    Dittmann K, Matyash K, Nemschokmichal S, Meichsner J, Schneider R 2010 Contrib. Plasma. Phys. 50 942

    [35]
    [36]
    [37]

    Gans T, Der Gathen V S V, Czarnetzki U, Dobele H F 2002 Contrib. Plasma Phys. 42 596

    [38]
    [39]

    Gans T, Lin C C, Schulz von der Gathen V, Dbele H F 2003 Phys. Rev. A 67 012707

    [40]

    Gans T, Schulz von der Gathen V, Dbele H F 2004 Contrib. Plasma Phys. 44 523

    [41]
    [42]
    [43]

    Booth J P, Hancock G, Perry N D, Toogood M J 1989 J. Appl. Phys. 66 5251

    [44]
    [45]

    Gans T, Gathen V S-v d, Dbele H F 2001 Plasma Sour. Sci. Technol. 10 17

    [46]
    [47]

    Gans T, Schulze J, OConnell D, Czarnetzki U, Faulkner R, Ellingboe A R, Turner M M 2006 Appl. Phys. Lett. 89 261502

    [48]
    [49]

    Schulze J, Gans T, OConnell D, Czarnetzki U, Ellingboe A R, Turner M M 2007 J. Phys. D: Appl. Phys. 40 7008

    [50]

    Jiang X Z, Liu Y X, Bi Z H, Lu W Q, Wang Y N 2012 Acta Phys. Sin. 61 015204 (in Chinese) [蒋相站, 刘永新, 毕振华, 陆文琪, 王友年 2012 物理学报 61 015204]

    [51]
    [52]
    [53]

    National Institute of Standards and Technology Atomic Spectra Database, ASD Version 3, www.physics.nist.gov [2013]

    [54]
    [55]

    Sadeghi N, Setser D W, Francis A, Czarnetzki U, Dbele H F 2001 J. Chem. Phys. 115 3144

    [56]
    [57]

    Czarnetzki U, Luggenhlscher D, Dbele H F 1998 Plasma Sources Sci. Technol. 8 230

    [58]
    [59]

    Gans T, Lin C C, Schulz von der Gathen V, Dbele H F 2001 J. Phys. D: Appl. Phys. 34 L39

    [60]
    [61]

    Mutsukura N, Kobayashi K, Machi Y 1989 J. Appl. Phys. 66 4688

    [62]
    [63]

    Mutsukura N, Kobayashi K, Machi Y 1990 J. Appl. Phys. 68 2657

  • [1] 蒋相站, 刘永新, 毕振华, 陆文琪, 王友年. 双频容性耦合等离子体密度径向均匀性研究. 物理学报, 2012, 61(1): 015204. doi: 10.7498/aps.61.015204
    [2] 牛田野, 曹金祥, 刘 磊, 刘金英, 王 艳, 王 亮, 吕 铀, 王 舸, 朱 颖. 低温氩等离子体中的单探针和发射光谱诊断技术. 物理学报, 2007, 56(4): 2330-2336. doi: 10.7498/aps.56.2330
    [3] 唐京武, 黄笃之, 易有根. Au激光等离子体X射线发射光谱的理论研究. 物理学报, 2010, 59(11): 7769-7774. doi: 10.7498/aps.59.7769
    [4] 高勋, 宋晓伟, 陶海岩, 林景全, 郭凯敏. 飞秒激光烧蚀硅表面产生等离子体的发射光谱研究. 物理学报, 2011, 60(2): 025203. doi: 10.7498/aps.60.025203
    [5] 朱竹青, 王晓雷. 飞秒激光空气等离子体发射光谱的实验研究. 物理学报, 2011, 60(8): 085205. doi: 10.7498/aps.60.085205
    [6] 蒲昱东, 杨家敏, 靳奉涛, 张璐, 丁永坤. 辐射输运实验中的Al等离子体发射光谱研究. 物理学报, 2011, 60(4): 045210. doi: 10.7498/aps.60.045210
    [7] 吴静, 刘国, 姚列明, 段旭如. 等离子体鞘层附近尘埃颗粒特性的数值模拟. 物理学报, 2012, 61(7): 075205. doi: 10.7498/aps.61.075205
    [8] 段萍, 曹安宁, 沈鸿娟, 周新维, 覃海娟, 刘金远, 卿绍伟. 电子温度对霍尔推进器等离子体鞘层特性的影响. 物理学报, 2013, 62(20): 205205. doi: 10.7498/aps.62.205205
    [9] 黄 松, 辛 煜, 宁兆元. 使用发射光谱对感应耦合CF4/CH4等离子体中C2基团形成机理的研究. 物理学报, 2005, 54(4): 1653-1658. doi: 10.7498/aps.54.1653
    [10] 段 萍, 刘金远, 宫 野, 张 宇, 刘 悦, 王晓钢. 等离子体鞘层中尘埃粒子的分布特性. 物理学报, 2007, 56(12): 7090-7099. doi: 10.7498/aps.56.7090
    [11] 赵晓云, 张丙开, 张开银. 两种带电尘埃颗粒的等离子体鞘层玻姆判据. 物理学报, 2013, 62(17): 175201. doi: 10.7498/aps.62.175201
    [12] 薄勇, 赵青, 罗先刚, 刘颖, 陈禹旭, 刘建卫. 电磁波在非均匀磁化的等离子体鞘套中传输特性研究. 物理学报, 2016, 65(3): 035201. doi: 10.7498/aps.65.035201
    [13] 王建华, 金传恩. 蒙特卡罗模拟在辉光放电鞘层离子输运研究中的应用. 物理学报, 2004, 53(4): 1116-1122. doi: 10.7498/aps.53.1116
    [14] 张改玲, 滑跃, 郝泽宇, 任春生. 13.56 MHz/2 MHz柱状感性耦合等离子体参数的对比研究. 物理学报, 2019, 68(10): 105202. doi: 10.7498/aps.68.20190071
    [15] 屠昕, 倪明江, 余量, 李晓东, 汪宇, 严建华. 大气压直流滑动弧等离子体工作特性研究. 物理学报, 2011, 60(1): 015101. doi: 10.7498/aps.60.015101
    [16] 李雪辰, 袁宁, 贾鹏英, 常媛媛, 嵇亚飞. 大气压等离子体针产生空气均匀放电特性研究. 物理学报, 2011, 60(12): 125204. doi: 10.7498/aps.60.125204
    [17] 高著秀, 冯春华, 杨宣宗, 黄建国, 韩建伟. 微小碎片加速器同轴枪内等离子体轴向速度研究. 物理学报, 2012, 61(14): 145201. doi: 10.7498/aps.61.145201
    [18] 陈维, 黄骏, 李辉, 吕国华, 王兴权, 张国平, 王鹏业, 杨思泽. 氦-氧等离子体针灭活肺癌A549细胞. 物理学报, 2012, 61(18): 185203. doi: 10.7498/aps.61.185203
    [19] 黄文同, 李寿哲, 王德真, 马腾才. 大气压下绝缘毛细管内等离子体放电及其特性研究. 物理学报, 2010, 59(6): 4110-4116. doi: 10.7498/aps.59.4110
    [20] 刘莉莹, 张家良, 郭卿超, 王德真. 大气压等离子体辅助多晶硅薄膜化学气相沉积参数诊断. 物理学报, 2010, 59(4): 2653-2660. doi: 10.7498/aps.59.2653
  • 引用本文:
    Citation:
计量
  • 文章访问数:  895
  • PDF下载量:  683
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-03-20
  • 修回日期:  2013-07-10
  • 刊出日期:  2013-10-20

双频容性耦合等离子体相分辨发射光谱诊断

  • 1. 大连理工大学等离子体物理化学实验室, 大连 116024;
  • 2. 大连理工大学物理与光电工程学院, 大连 116024
    基金项目: 

    国家自然科学基金(批准号: 10975029)和国家重大科技专项(批准号: 2011ZX02403-001) 资助的课题.

摘要: 采用相分辨发射光谱法, 对双频容性耦合纯Ar和不同含O2量的Ar-O2混合气体放电等离子体的鞘层激发模式进行了探究. 在射频耦合电源上极板的鞘层区域处观察到两种电子激发模式: 鞘层扩张引起的电子碰撞激发模式和二次电子引起的电子碰撞激发模式; 并发现这两种激发模式均受到低频射频电源周期的调制. 在纯Ar放电等离子体中, 两种激发模式的激发轮廓相似; 而在Ar-O2混合气放电等离子体中, 随着含O2量的增加, 二次电子的激发轮廓变弱. 此外, 利用相分辨发射光谱法对不同含O2量的Ar-O2混合气放电下Ar的 750.4 nm谱线的平均低频电源周期轴向分布进行了研究, 得到了距耦合电源上极板约3.8 mm处为双频容性耦合射频等离子体的鞘层边界.

English Abstract

参考文献 (63)

目录

    /

    返回文章
    返回