搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于波导模式变换的圆波导TE62模式激励器的研究

沈文渊 王虎 耿志辉 杜朝海 刘濮鲲

基于波导模式变换的圆波导TE62模式激励器的研究

沈文渊, 王虎, 耿志辉, 杜朝海, 刘濮鲲
PDF
导出引用
导出核心图
  • 基于不规则波导模式匹配法以及缓变波导中电磁波模式耦合理论,研究了一种W波段圆波导TE62模式激励器. 该波导模式激励器采用矩形波导TE10模式通过侧壁耦合馈入同轴波导,利用同轴波导的选模特性激励TE61模式;随后利用轴向半径周期微扰的圆波导实现TE61–TE62模式变换. 文中推导了矩形-同轴波导模式匹配理论,系统研究了波导结构缓变参数对模式变换效率的影响,完成了模式变换器的优化仿真设计,数值计算结果表明:中心频率处TE62模式的转换效率为94.5%,纯度为98.16%,效率85%以上带宽达到1 GHz,能够满足回旋管冷测的要求.
    • 基金项目: 国家自然科学基金(批准号:61072026,61072024)资助的课题.
    [1]

    Liu P K, Xu S X 2003 Journal of Electronics and Information Technology 25 683 (in Chinese) [刘濮鲲, 徐寿喜 2003 电子与信息学报 25 683]

    [2]

    Dammertz G, Alberti S, Aronld A, Giguet E, LeGoff Y, Thumm M 2001 Fusion Engineering and Design. 53 561

    [3]

    Du C H, Xue Q Z, Liu P K 2010 Chin. Phys. B 19 048703

    [4]

    Sun Y Y, Zhang S C 2011 Acta Phys. Sin. 60 095201 (in Chinese) [孔艳岩, 张世昌 2011 物理学报 60 095201]

    [5]

    Luo Y T, Tang C J, Liu C, Liu P K 2009 Acta Phys. Sin. 58 8174 (in Chinese) [罗尧天, 唐昌建, 刘畅, 刘濮鲲 2009 物理学报 58 8174]

    [6]

    Jory H, Wagner D, Blank M, Chu S, Felch K 2001 Int. Journal of Infrared and Millimeter Waves. 22 1395

    [7]

    Alexandrov N L, Chirkov A V, Denisov G G, Vinogradov D V, Kasparek W, Pretterebner J, Wagner D 1992 Int. Journal of Infrared and Millimeter Waves. 13 1369

    [8]

    Li S F, Zhang C H, Wang Z, Chen H B, Hu L L, Pan W W, Guo F 2011 High Power Laser and Particle Beams 23 2174 (in Chinese) [李少甫, 张从会, 王忠, 陈洪斌, 胡林林, 潘文武, 郭峰 2011 强激光与粒子束 23 2174]

    [9]

    Alexandrov N L, Denisov G G, Whaley D R, Tran M Q 1995 Int. Journal of Electronics 79 215

    [10]

    Wang B, Liu P K, Geng Z H 2010 J. Infrared Millim. Wave 29 109 (in Chinese) [王斌, 刘濮鲲, 耿志辉 2010 红外与毫米波学报 29 109]

    [11]

    Wang B, Du C H, Liu P K, Geng Z H, Xu S X 2010 Acta Phys. Sin. 59 2512 (in Chinese) [王斌, 杜朝海, 刘濮鲲, 耿志辉, 徐寿喜 2010 物理学报 59 2512]

    [12]

    Marek E, Bialkowski J, Bornemann V, Waris P, Paul W D 1995 IEEE. Trans. Microw. Theory Tech. 43 1875

    [13]

    McCurdy A H, Choi J J 1999 IEEE. Trans. Microw. Theory Tech. 47 164

    [14]

    Wang W X, Gong Y B, Yu G F, Yue L N, Sun J H 2003 IEEE. Trans. Microw. Theory Tech. 51 55

    [15]

    Chang T H, Li C H, Wu C N, Yu C F 2010 IEEE. Trans. Microw. Theory Tech. 58 1543

    [16]

    Peng W, Liu P K, Geng Z H 2010 Vacuum Electronics 5 1 (in Chinese) [彭伟, 刘濮鲲, 耿志辉 2010 真空电子技术 5 1]

    [17]

    Yang S W, Tan S H, Li H F 2000 Int. Journal of Infrared and Millimeter Waves, 21 219

    [18]

    Li H F, Thumm M 1991 Int. Journal of Electronics 71 827

    [19]

    Lan F, Yang Z Q, Shi Z J 2012 Acta Phys. Sin. 61 155 (in Chinese) [兰峰, 杨梓强, 史宗君 2012 物理学报 61 155]

    [20]

    Du R B, Luo Y, Niu X J 2008 High Power Laser and Particle Beams 20 99 (in Chinese) [杜人波, 罗勇, 牛新建 2008 强激光与粒子束 20 99]

    [21]

    Niu X J, Li H F, Yu S, Xie Z L, Yang S W 2002 Acta Phys. Sin. 51 2291 (in Chinese) [牛新建, 李宏福, 喻胜, 谢仲怜, 杨仕文 2002 物理学报 51 2291]

    [22]

    Yuan C W, Zhong H H, Liu Q X, Qian B L 2005 High Power Laser and Particle Beams 17 1251 (in Chinese) [袁成卫, 钟辉煌, 刘庆想, 钱保良 2005 强激光与粒子束 17 1251]

    [23]

    Niu X J, Gu L, Yu S, Li H F 2007 J. Infrared Millim. Wave 26 117 (in Chinese) [牛新建, 顾玲, 喻胜, 李宏福 2007 红外与毫米波学报 26 117]

    [24]

    Chen L W, Niu X J, Li X Y, Sun M 2004 J. Infrared Millim. Wave 23 51 (in Chinese) [陈立伟, 牛新建, 李晓燕, 孙敏 2004 红外与毫米波学报 23 51]

  • [1]

    Liu P K, Xu S X 2003 Journal of Electronics and Information Technology 25 683 (in Chinese) [刘濮鲲, 徐寿喜 2003 电子与信息学报 25 683]

    [2]

    Dammertz G, Alberti S, Aronld A, Giguet E, LeGoff Y, Thumm M 2001 Fusion Engineering and Design. 53 561

    [3]

    Du C H, Xue Q Z, Liu P K 2010 Chin. Phys. B 19 048703

    [4]

    Sun Y Y, Zhang S C 2011 Acta Phys. Sin. 60 095201 (in Chinese) [孔艳岩, 张世昌 2011 物理学报 60 095201]

    [5]

    Luo Y T, Tang C J, Liu C, Liu P K 2009 Acta Phys. Sin. 58 8174 (in Chinese) [罗尧天, 唐昌建, 刘畅, 刘濮鲲 2009 物理学报 58 8174]

    [6]

    Jory H, Wagner D, Blank M, Chu S, Felch K 2001 Int. Journal of Infrared and Millimeter Waves. 22 1395

    [7]

    Alexandrov N L, Chirkov A V, Denisov G G, Vinogradov D V, Kasparek W, Pretterebner J, Wagner D 1992 Int. Journal of Infrared and Millimeter Waves. 13 1369

    [8]

    Li S F, Zhang C H, Wang Z, Chen H B, Hu L L, Pan W W, Guo F 2011 High Power Laser and Particle Beams 23 2174 (in Chinese) [李少甫, 张从会, 王忠, 陈洪斌, 胡林林, 潘文武, 郭峰 2011 强激光与粒子束 23 2174]

    [9]

    Alexandrov N L, Denisov G G, Whaley D R, Tran M Q 1995 Int. Journal of Electronics 79 215

    [10]

    Wang B, Liu P K, Geng Z H 2010 J. Infrared Millim. Wave 29 109 (in Chinese) [王斌, 刘濮鲲, 耿志辉 2010 红外与毫米波学报 29 109]

    [11]

    Wang B, Du C H, Liu P K, Geng Z H, Xu S X 2010 Acta Phys. Sin. 59 2512 (in Chinese) [王斌, 杜朝海, 刘濮鲲, 耿志辉, 徐寿喜 2010 物理学报 59 2512]

    [12]

    Marek E, Bialkowski J, Bornemann V, Waris P, Paul W D 1995 IEEE. Trans. Microw. Theory Tech. 43 1875

    [13]

    McCurdy A H, Choi J J 1999 IEEE. Trans. Microw. Theory Tech. 47 164

    [14]

    Wang W X, Gong Y B, Yu G F, Yue L N, Sun J H 2003 IEEE. Trans. Microw. Theory Tech. 51 55

    [15]

    Chang T H, Li C H, Wu C N, Yu C F 2010 IEEE. Trans. Microw. Theory Tech. 58 1543

    [16]

    Peng W, Liu P K, Geng Z H 2010 Vacuum Electronics 5 1 (in Chinese) [彭伟, 刘濮鲲, 耿志辉 2010 真空电子技术 5 1]

    [17]

    Yang S W, Tan S H, Li H F 2000 Int. Journal of Infrared and Millimeter Waves, 21 219

    [18]

    Li H F, Thumm M 1991 Int. Journal of Electronics 71 827

    [19]

    Lan F, Yang Z Q, Shi Z J 2012 Acta Phys. Sin. 61 155 (in Chinese) [兰峰, 杨梓强, 史宗君 2012 物理学报 61 155]

    [20]

    Du R B, Luo Y, Niu X J 2008 High Power Laser and Particle Beams 20 99 (in Chinese) [杜人波, 罗勇, 牛新建 2008 强激光与粒子束 20 99]

    [21]

    Niu X J, Li H F, Yu S, Xie Z L, Yang S W 2002 Acta Phys. Sin. 51 2291 (in Chinese) [牛新建, 李宏福, 喻胜, 谢仲怜, 杨仕文 2002 物理学报 51 2291]

    [22]

    Yuan C W, Zhong H H, Liu Q X, Qian B L 2005 High Power Laser and Particle Beams 17 1251 (in Chinese) [袁成卫, 钟辉煌, 刘庆想, 钱保良 2005 强激光与粒子束 17 1251]

    [23]

    Niu X J, Gu L, Yu S, Li H F 2007 J. Infrared Millim. Wave 26 117 (in Chinese) [牛新建, 顾玲, 喻胜, 李宏福 2007 红外与毫米波学报 26 117]

    [24]

    Chen L W, Niu X J, Li X Y, Sun M 2004 J. Infrared Millim. Wave 23 51 (in Chinese) [陈立伟, 牛新建, 李晓燕, 孙敏 2004 红外与毫米波学报 23 51]

  • [1] 牛新建, 李宏福, 喻胜, 谢仲怜, 杨仕文. 8mm高功率过模弯曲圆波导TE01—TM11模式变换. 物理学报, 2002, 51(10): 2291-2295. doi: 10.7498/aps.51.2291
    [2] 王虎, 沈文渊, 耿志辉, 徐寿喜, 王斌, 杜朝海, 刘濮鲲. 高功率回旋振荡管Denisov型辐射器的研究. 物理学报, 2013, 62(23): 238401. doi: 10.7498/aps.62.238401
    [3] 裴丽, 赵瑞峰. 统一非对称光波导横向耦合模理论分析. 物理学报, 2013, 62(18): 184213. doi: 10.7498/aps.62.184213
    [4] 李鹏, 赵建林, 张晓娟, 侯建平. 三角结构三芯光子晶体光纤中的模式耦合特性分析. 物理学报, 2010, 59(12): 8625-8631. doi: 10.7498/aps.59.8625
    [5] 刘静, 舒挺, 李志强. 同轴波导虚阴极振荡器二极管参数优化的研究. 物理学报, 2011, 60(10): 105202. doi: 10.7498/aps.60.105202
    [6] 刘静, 舒挺, 李志强. 新型反馈式轴向同轴虚阴极振荡器. 物理学报, 2010, 59(4): 2629-2634. doi: 10.7498/aps.59.2629
    [7] 朱存远, 李朝刚, 方泉, 汪茂胜, 彭雪城, 黄万霞. 用久期微扰理论将弹簧振子模型退化为耦合模理论. 物理学报, 2020, 69(7): 074501. doi: 10.7498/aps.69.20191505
    [8] 王燕花, 任文华, 刘 艳, 谭中伟, 简水生. 相位修正的耦合模理论用于计算光纤Bragg光栅法布里-珀罗腔透射谱. 物理学报, 2008, 57(10): 6393-6399. doi: 10.7498/aps.57.6393
    [9] 付兴虎, 谢海洋, 杨传庆, 张顺杨, 付广伟, 毕卫红. 基于包层模谐振的三包层石英特种光纤温度传感特性研究. 物理学报, 2016, 65(2): 024211. doi: 10.7498/aps.65.024211
    [10] 王目光, 魏 淮, 简水生. 复合型双周期光纤光栅的理论与实验研究. 物理学报, 2003, 52(3): 609-614. doi: 10.7498/aps.52.609
    [11] 於陆勒, 盛政明, 张 杰. 均匀等离子体光栅的色散特性研究. 物理学报, 2008, 57(10): 6457-6464. doi: 10.7498/aps.57.6457
    [12] 李松茂, 王奇, 吴中, 卫青. Kerr类非线性介质周期结构中的慢Bragg孤子. 物理学报, 2001, 50(3): 489-495. doi: 10.7498/aps.50.489
    [13] 陈云天, 王经纬, 陈伟锦, 徐竞. 互易波导模式耦合理论. 物理学报, 2020, (): . doi: 10.7498/aps.69.20200194
    [14] 徐刚, 谢平, 廖勇. X波段过模弯曲圆波导TM01-HE11模式变换器研究. 物理学报, 2013, 62(7): 078401. doi: 10.7498/aps.62.078401
    [15] 曾维友, 谢康, 陈伟, 毛书哲. TE-TM模变换型光波导隔离器的理论研究. 物理学报, 2012, 61(16): 164201. doi: 10.7498/aps.61.164201
    [16] 林旭升, 吴立军, 郭 旗, 胡 巍, 兰 胜. 条形耦合波导对光子晶体耦合缺陷模的影响. 物理学报, 2008, 57(12): 7717-7724. doi: 10.7498/aps.57.7717
    [17] 林为干. 脊峰形同轴波导的工作特性. 物理学报, 1961, 72(4): 170-179. doi: 10.7498/aps.17.170
    [18] 李冠林, 李春阳, 陈希有, 张效伟. 基于共振参数微扰法的SEPIC变换器的混沌控制. 物理学报, 2013, 62(21): 210505. doi: 10.7498/aps.62.210505
    [19] 周宇飞, 陈军宁, 柯导明, 时龙兴, 孙伟锋, 谢智刚. 参数共振微扰法在Boost变换器混沌控制中的实现及其优化. 物理学报, 2004, 53(11): 3676-3683. doi: 10.7498/aps.53.3676
    [20] 刘濮鲲, 耿志辉, 徐寿喜, 王斌, 杜朝海. W波段边廊模回旋管准光模式变换器的研究与设计. 物理学报, 2010, 59(4): 2512-2518. doi: 10.7498/aps.59.2512
  • 引用本文:
    Citation:
计量
  • 文章访问数:  698
  • PDF下载量:  421
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-04
  • 修回日期:  2013-07-31
  • 刊出日期:  2013-12-05

基于波导模式变换的圆波导TE62模式激励器的研究

  • 1. 中国科学院电子学研究所, 高功率微波源与技术重点实验室, 北京 100190;
  • 2. 中国科学院大学, 北京 100190;
  • 3. 北京大学信息科学技术学院, 北京 100871
    基金项目: 

    国家自然科学基金(批准号:61072026,61072024)资助的课题.

摘要: 基于不规则波导模式匹配法以及缓变波导中电磁波模式耦合理论,研究了一种W波段圆波导TE62模式激励器. 该波导模式激励器采用矩形波导TE10模式通过侧壁耦合馈入同轴波导,利用同轴波导的选模特性激励TE61模式;随后利用轴向半径周期微扰的圆波导实现TE61–TE62模式变换. 文中推导了矩形-同轴波导模式匹配理论,系统研究了波导结构缓变参数对模式变换效率的影响,完成了模式变换器的优化仿真设计,数值计算结果表明:中心频率处TE62模式的转换效率为94.5%,纯度为98.16%,效率85%以上带宽达到1 GHz,能够满足回旋管冷测的要求.

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回