搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

连续波抽运气体波导产生太赫兹激光的理论研究

张会云 刘蒙 张玉萍 申端龙 吴志心 尹贻恒 李德华

连续波抽运气体波导产生太赫兹激光的理论研究

张会云, 刘蒙, 张玉萍, 申端龙, 吴志心, 尹贻恒, 李德华
PDF
导出引用
  • 基于速率方程理论,建立了光抽运气体波导产生太赫兹(THz)激光的能量转化模型,理论分析并求解得到抽运光吸收系数、THz小信号增益系数以及THz输出功率表达式. 计算结果表明,THz输出功率随工作物质气压的升高先增加后逐渐减少,随抽运功率的增加、输出镜反射率的减小而增加;最佳工作气压随抽运功率的增大而增大;激发态粒子数以及THz光子通量随波导截面径向逐渐减小,而THz 小信号增益系数逐渐增加;抽运饱和、弱抽运吸收与激发态工作物质对THz 激光的吸收是限制激光转化效率提高的根源;基于该模型的计算结果与相关文献中的实验数据符合较好.
    • 基金项目: 国家自然科学基金(批准号:61001018)、山东省自然科学基金(批准号:ZR2011FM009,ZR2012FM011)、山东科技大学杰出青年科学基金(批准号:2010KYJQ103)、山东省高等学校科技计划项目(批准号:J11LG20)、青岛市科技计划项目(批准号:11-2-4-4-(8)-jch)和山东科技大学科技创新基金(批准号:YCB120173)资助的课题.
    [1]

    Ferguson B, Zhang X C 2002 Nature 1 26

    [2]

    Zhang X B, Shi W 2006 Acta Phys. Sin. 55 5237 (in Chinese) [张显斌, 施卫 2006 物理学报 55 5237]

    [3]

    He Z H, Yao J Q, Shi H F, Huang X, Luo X Z, Jiang S J, Wang P 2007 Acta Phys. Sin. 56 5802 (in Chinese) [何志红, 姚建铨, 时华锋, 黄晓, 罗锡璋, 江绍基, 王鹏 2007 物理学报 56 5802]

    [4]

    Cheo P K 1987 Handbook of Molecular Laser (New York: Marcel Dekker Inc.) pp497–636

    [5]

    Jiu Z X, Zuo D L, Miao L, Qi C C, Cheng Z H 2010 Chin. Phys. Lett. 27 024211

    [6]

    Tobin M S 1985 Proc. IEEE 73 61

    [7]

    Zhong K, Yao J Q, Xu D G, Zhang H Y, Wang P 2011 Acta Phys. Sin. 60 034210 (in Chinese) [钟凯, 姚建铨, 徐德刚, 张会云, 王鹏 2011 物理学报 60 034210]

    [8]

    Zhang T Y, Cao J C 2004 Chin. Phys. B 13 1742

    [9]

    Zhang C H, Wang Y Y, Gai B, Chen J, Tang L, Xu W W, Wu P H 2007 Cryogenics and Superconductivity 35 245 (in Chinese) [张彩虹, 王媛媛, 盖博, 陈健, 康琳, 许伟伟, 吴培亨 2007 低温与超导 35 245]

    [10]

    He Z H 2007 Ph. D. Dissertation (Tianjin; Tianjin University) (in Chinese) [何志红 2007 博士学位论文 (天津: 天津大学)]

    [11]

    Shen J E, Rong J, Liu W X 2006 Infrared and Laser Engineering 35 342 (in Chinese) [申金娥, 荣健, 刘文鑫 2006 激光与红外 35 342]

    [12]

    Yao J Q, Chi N, Yang P F, Cui H X, Wang J L, Li J S, Xu D G, Ding X 2009 Chinese Journal of Laser 36 2213 (in Chinese) [姚建铨, 迟楠, 杨鹏飞, 崔海霞, 汪静丽, 李九生, 徐德刚, 丁鑫 2009 中国激光 36 2213]

    [13]

    Gregory S, Herman 1994 SPIE 2379 291

    [14]

    Xie H Y, Wang L, Zhao L J, Zhu H L, Wang W 2007 Chin. Phys. B 16 1459

    [15]

    Henningsen J O, Jensen H G 1975 IEEE J. Quantum Elect. 11 248

    [16]

    Mansfield D K, Horlbeck E, Bennett C L, Chouinard R 1985 International Journal of Infrared and Millimeter Waves 6 867

    [17]

    DeTemple T, Danielewicz E 1976 IEEE J. Quantum Elect. 12 40

    [18]

    Christenen C P, Freed C, Haus H A 1969 IEEE J. Quantum Elect. 5 276

    [19]

    Zhou B K, Gao Y Z, Chen T R, Chen J H 2010 Principles of Laser (Vol.6) (Beijing: National Defence Industry Press) pp123–158 (in Chinese) [周炳琨, 高以智, 陈倜嵘, 陈家骅 2010 激光原理 (第6版) (北京: 国防工业出版社) 第123–158 页]

    [20]

    Freund S M, Duxbury G, Romheld M, Tiedje J T, Oka T 1974 J. Mol. Spectrosc. 52 38

    [21]

    Weitz E, Flynn G W 1973 J. Chem. Phys. 58 2781

    [22]

    Frenkel L, Marantz H, Sullivan T 1971 Phys. Rev. A 3 1640

    [23]

    Abrams R L 1972 IEEE J. Quantum Elect. 8 838

    [24]

    Marcatili E A J, Schmeltzer R A 1964 Bell Syst. Tech. J. 62 1783

  • [1]

    Ferguson B, Zhang X C 2002 Nature 1 26

    [2]

    Zhang X B, Shi W 2006 Acta Phys. Sin. 55 5237 (in Chinese) [张显斌, 施卫 2006 物理学报 55 5237]

    [3]

    He Z H, Yao J Q, Shi H F, Huang X, Luo X Z, Jiang S J, Wang P 2007 Acta Phys. Sin. 56 5802 (in Chinese) [何志红, 姚建铨, 时华锋, 黄晓, 罗锡璋, 江绍基, 王鹏 2007 物理学报 56 5802]

    [4]

    Cheo P K 1987 Handbook of Molecular Laser (New York: Marcel Dekker Inc.) pp497–636

    [5]

    Jiu Z X, Zuo D L, Miao L, Qi C C, Cheng Z H 2010 Chin. Phys. Lett. 27 024211

    [6]

    Tobin M S 1985 Proc. IEEE 73 61

    [7]

    Zhong K, Yao J Q, Xu D G, Zhang H Y, Wang P 2011 Acta Phys. Sin. 60 034210 (in Chinese) [钟凯, 姚建铨, 徐德刚, 张会云, 王鹏 2011 物理学报 60 034210]

    [8]

    Zhang T Y, Cao J C 2004 Chin. Phys. B 13 1742

    [9]

    Zhang C H, Wang Y Y, Gai B, Chen J, Tang L, Xu W W, Wu P H 2007 Cryogenics and Superconductivity 35 245 (in Chinese) [张彩虹, 王媛媛, 盖博, 陈健, 康琳, 许伟伟, 吴培亨 2007 低温与超导 35 245]

    [10]

    He Z H 2007 Ph. D. Dissertation (Tianjin; Tianjin University) (in Chinese) [何志红 2007 博士学位论文 (天津: 天津大学)]

    [11]

    Shen J E, Rong J, Liu W X 2006 Infrared and Laser Engineering 35 342 (in Chinese) [申金娥, 荣健, 刘文鑫 2006 激光与红外 35 342]

    [12]

    Yao J Q, Chi N, Yang P F, Cui H X, Wang J L, Li J S, Xu D G, Ding X 2009 Chinese Journal of Laser 36 2213 (in Chinese) [姚建铨, 迟楠, 杨鹏飞, 崔海霞, 汪静丽, 李九生, 徐德刚, 丁鑫 2009 中国激光 36 2213]

    [13]

    Gregory S, Herman 1994 SPIE 2379 291

    [14]

    Xie H Y, Wang L, Zhao L J, Zhu H L, Wang W 2007 Chin. Phys. B 16 1459

    [15]

    Henningsen J O, Jensen H G 1975 IEEE J. Quantum Elect. 11 248

    [16]

    Mansfield D K, Horlbeck E, Bennett C L, Chouinard R 1985 International Journal of Infrared and Millimeter Waves 6 867

    [17]

    DeTemple T, Danielewicz E 1976 IEEE J. Quantum Elect. 12 40

    [18]

    Christenen C P, Freed C, Haus H A 1969 IEEE J. Quantum Elect. 5 276

    [19]

    Zhou B K, Gao Y Z, Chen T R, Chen J H 2010 Principles of Laser (Vol.6) (Beijing: National Defence Industry Press) pp123–158 (in Chinese) [周炳琨, 高以智, 陈倜嵘, 陈家骅 2010 激光原理 (第6版) (北京: 国防工业出版社) 第123–158 页]

    [20]

    Freund S M, Duxbury G, Romheld M, Tiedje J T, Oka T 1974 J. Mol. Spectrosc. 52 38

    [21]

    Weitz E, Flynn G W 1973 J. Chem. Phys. 58 2781

    [22]

    Frenkel L, Marantz H, Sullivan T 1971 Phys. Rev. A 3 1640

    [23]

    Abrams R L 1972 IEEE J. Quantum Elect. 8 838

    [24]

    Marcatili E A J, Schmeltzer R A 1964 Bell Syst. Tech. J. 62 1783

  • [1] 黎华, 韩英军, 谭智勇, 张戎, 曹俊诚. 半绝缘等离子体波导太赫兹量子级联激光器工艺研究. 物理学报, 2010, 59(3): 2169-2172. doi: 10.7498/aps.59.2169
    [2] 万文坚, 尹嵘, 谭智勇, 王丰, 韩英军, 曹俊诚. 2.9THz束缚态向连续态跃迁量子级联激光器研制. 物理学报, 2013, 62(21): 210701. doi: 10.7498/aps.62.210701
    [3] 刘欢, 巩马理. 紧凑型激光二极管抽运全固态355 nm连续波紫外激光器. 物理学报, 2009, 58(10): 7000-7004. doi: 10.7498/aps.58.7000
    [4] 于永吉, 陈薪羽, 成丽波, 王超, 吴春婷, 董渊, 李述涛, 金光勇. 基于MgO:APLN的1.57m/3.84m连续波内腔多光参量振荡器研究. 物理学报, 2015, 64(22): 224215. doi: 10.7498/aps.64.224215
    [5] 张蕴川, 樊莉, 魏晨飞, 顾晓敏, 任思贤. 波长锁定878.9 nm激光二极管抽运内腔式YVO4/BaWO4连续波拉曼激光器. 物理学报, 2018, 67(2): 024206. doi: 10.7498/aps.67.20171848
    [6] 刘欢, 王巍, 巩马理. 角抽运Nd:YAG复合板条946 nm连续运转激光器 . 物理学报, 2013, 62(14): 144205. doi: 10.7498/aps.62.144205
    [7] 樊莉, 陈海涛, 朱骏. 激光二极管抽运的Nd:YVO4连续自拉曼1175nm激光器. 物理学报, 2014, 63(15): 154208. doi: 10.7498/aps.63.154208
    [8] 陈园园, 邹仁华, 宋钢, 张恺, 于丽, 赵玉芳, 肖井华. 纳米银线波导中表面等离极化波激发和辐射的偏振特性研究. 物理学报, 2012, 61(24): 247301. doi: 10.7498/aps.61.247301
    [9] 张玉萍, 张会云, 何志红, 王鹏, 李喜福, 姚建铨. 36 W侧面抽运腔内倍频Nd:YAG/KTP连续绿光激光器. 物理学报, 2009, 58(7): 4647-4651. doi: 10.7498/aps.58.4647
    [10] 韩煜, 袁学松, 马春燕, 鄢扬. 波瓣波导谐振腔太赫兹回旋管的研究. 物理学报, 2012, 61(6): 064102. doi: 10.7498/aps.61.064102
    [11] 刘亚青, 张玉萍, 张会云, 吕欢欢, 李彤彤, 任广军. 光抽运多层石墨烯太赫兹表面等离子体增益特性的研究. 物理学报, 2014, 63(7): 075201. doi: 10.7498/aps.63.075201
    [12] 张会云, 刘蒙, 张玉萍, 何志红, 申端龙, 吴志心, 尹贻恒, 李德华. 基于振动弛豫理论提高光抽运太赫兹激光器输出功率的研究. 物理学报, 2014, 63(1): 010702. doi: 10.7498/aps.63.010702
    [13] 王海艳, 赵国忠, 王新强. 不同抽运光强激发窄带隙半导体产生太赫兹辐射的研究. 物理学报, 2011, 60(4): 043202. doi: 10.7498/aps.60.043202
    [14] 阎昊岚, 程雅青, 王凯礼, 王雅昕, 陈洋玮, 袁秋林, 马恒. 烷基环己苯异硫氰酸液晶材料太赫兹波吸收. 物理学报, 2019, 68(11): 116102. doi: 10.7498/aps.68.20190209
    [15] 赵冬梅, 施宇蕾, 周庆莉, 李磊, 孙会娟, 张存林. 基于人工复合材料的太赫兹波双波段滤波. 物理学报, 2011, 60(9): 093301. doi: 10.7498/aps.60.093301
    [16] 陈再高, 王建国, 王光强, 李爽, 王玥, 张殿辉, 乔海亮. 0.14太赫兹同轴表面波振荡器研究. 物理学报, 2014, 63(11): 110703. doi: 10.7498/aps.63.110703
    [17] 江月松, 聂梦瑶, 张崇辉, 辛灿伟, 华厚强. 粗糙表面涂覆目标的太赫兹波散射特性研究. 物理学报, 2015, 64(2): 024101. doi: 10.7498/aps.64.024101
    [18] 陈再高, 王建国, 王玥, 张殿辉, 乔海亮. 欧姆损耗对太赫兹频段同轴表面波振荡器的影响. 物理学报, 2015, 64(7): 070703. doi: 10.7498/aps.64.070703
    [19] 张玉萍, 李彤彤, 吕欢欢, 黄晓燕, 张会云. 工字形太赫兹超材料吸波体的传感特性研究. 物理学报, 2015, 64(11): 117801. doi: 10.7498/aps.64.117801
    [20] 张银, 冯一军, 姜田, 曹杰, 赵俊明, 朱博. 基于石墨烯的太赫兹波散射可调谐超表面. 物理学报, 2017, 66(20): 204101. doi: 10.7498/aps.66.204101
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1419
  • PDF下载量:  378
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-08-26
  • 修回日期:  2013-11-09
  • 刊出日期:  2014-01-05

连续波抽运气体波导产生太赫兹激光的理论研究

  • 1. 山东科技大学理学院, 青岛市太赫兹技术重点实验室, 青岛 266510
    基金项目: 

    国家自然科学基金(批准号:61001018)、山东省自然科学基金(批准号:ZR2011FM009,ZR2012FM011)、山东科技大学杰出青年科学基金(批准号:2010KYJQ103)、山东省高等学校科技计划项目(批准号:J11LG20)、青岛市科技计划项目(批准号:11-2-4-4-(8)-jch)和山东科技大学科技创新基金(批准号:YCB120173)资助的课题.

摘要: 基于速率方程理论,建立了光抽运气体波导产生太赫兹(THz)激光的能量转化模型,理论分析并求解得到抽运光吸收系数、THz小信号增益系数以及THz输出功率表达式. 计算结果表明,THz输出功率随工作物质气压的升高先增加后逐渐减少,随抽运功率的增加、输出镜反射率的减小而增加;最佳工作气压随抽运功率的增大而增大;激发态粒子数以及THz光子通量随波导截面径向逐渐减小,而THz 小信号增益系数逐渐增加;抽运饱和、弱抽运吸收与激发态工作物质对THz 激光的吸收是限制激光转化效率提高的根源;基于该模型的计算结果与相关文献中的实验数据符合较好.

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回