-
基于密度泛函理论的第一性原理计算,研究了横截面为五边形和六边形的核壳结构硅纳米线的过渡金属Co原子替代掺杂. 通过比较形成能发现,核心位置掺杂、壳层单链掺杂以及外壳层全替代掺杂的硅纳米线都具有稳定性,其中核心位置掺杂结构的稳定性最高. 掺杂体系均呈现金属性,随着掺杂浓度的增加,电导通道数增加. Co原子掺杂的硅纳米线呈现铁磁性,具有磁矩. Bader电荷分析表明,电荷从Si原子转移至过渡金属Co原子. 与自由态时过渡金属Co原子的磁矩相比,体系中Co原子的磁矩有所降低,这主要是由Co原子4s轨道向3d/4p轨道的电荷转移以及4s,3d,4p的上自旋电子转移至下自旋导致的.
[1] Morales A M, Lieber C M 1998 Science 279 208
[2] Tang Y H, Zhang Y F, Lee C S, Wang N, Yu D P, Bello I, Lee S T 1998 Mater. Res. Soc. Symp. Proc. 526 73
[3] Zhang J H, Gu F, Liu Q J, Gu B, Li M 2010 Acta Phys. Sin. 59 4226 (in Chinese) [张加宏, 顾芳, 刘清惓, 顾斌, 李敏 2010 物理学报 59 4226]
[4] Liang W H, Ding X C, Chu L Z, Deng Z C, Guo J X, Wu Z H, Wang Y L 2010 Acta Phys. Sin. 59 8071 (in Chinese) [梁伟华, 丁学成, 褚立志, 邓泽超, 郭建新, 吴转花, 王英龙 2010 物理学报 59 8071]
[5] Liang L, Xu Q F, Hu M L, Su H, Xiang G H, Zhou L B 2013 Acta Phys. Sin. 62 037301 (in Chinese) [梁磊, 徐琴芳, 忽满利, 孙浩, 向光华, 周利斌 2013 物理学报 62 037301]
[6] Wang M L, Zhang C X, Wu Z L, Jing X L, Xu H J 2014 Chin. Phys. B 23 067802
[7] Liu Y, Liang P, Shu H B, Cao D, Dong Q M, Wang L 2014 Chin. Phys. B 23 067304
[8] Xing Y J, Yu D P, Xi Z H, Xue Z Q 2002 Chin. Phys. 11 1047
[9] Holmes J D, Johnston K P, Doty R C 2000 Science 287 1471
[10] Cui Y, Duan X F, Hu J T 2000 Phys. Chem. 104 5213
[11] Baumer A, Stutzmann M S 2004 Appl. Phys. Lett. 85 943
[12] Li D Y, Wu Y Y, Shi L 2003 Appl. Phys. Lett. 83 2934
[13] Durgun E, Akman N, Ciraci S 2008 Phys. Rev. B 78 195116
[14] Durgun E, Çakır D, Akman N 2007 Phys. Rev. Lett. 99 256806
[15] Sen P, Glseren O, Yildirim T 2002 Phys. Rev. B 65 235433
[16] Menon M, Andriotis N, Froudakis G 2002 Nano Lett. 2 301
[17] Nishio K, Ozaki T, Morishita T 2010 Phys. Rev. B 81 115444
[18] Dumitrică T, Hua M, Yakobson B I 2004 Phys. Rev. B 70 241303
[19] Singh A K, Briere T M, Kumar V, Kawazoe Y 2003 Phys. Rev. Lett. 91 146802
[20] Jang Y R, Jo C, Lee J I 2005 IEEE Trans. Magn. 41 3118
[21] Berkdemir C, Gleeren O 2009 Phys. Rev. B 80 115334
[22] Vila L, Vincent P, Pra L D D, Pirio G, Minoux E, Gangloff L, Demoustier-Champagne S, Sarazin N, Ferain E, Legras R, Piraux L, Legagneux P 2004 Nano Lett. 4 521
[23] Zhao L Y, Liao K, Pynenburg M, Wong L, Heinig N, Thomas J P, Leung K T 2013 ACS Appl. Mater. Inter. 5 2410
[24] Tsai C I, Yeh P H, Wang C Y, Wu H W, Chen U S, Liu M Y, Wu W W, Wang Z L 2009 Cryst. Growth Des. 9 4514
[25] Seo K, Varadwaj K S K, Mohanty P, Lee S, Jo Y, Jung M H, Kim J, Kim B 2007 Nano Lett. 7 1240
[26] Seo K, Lee S, Yoon H, In J, Varadwaj K S K, Jo Y, Jung M H, Kim J, Kim B 2009 ACS Nano 3 1145
[27] Kresse G, Hafener J 1994 Phys. Rev. B 49 14251
[28] Kresse G, Furthmller J 1996 Comput. Mater. Sci. 6 15
[29] Payne M C, Teter M P, Arias T A, Allan D C, Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045
[30] Kresse G, Hafener J 1994 Phys. Rev. B 49 14251
[31] Blöchl P E 1994 Phys. Rev. B 50 17953
[32] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[33] Kresse G, Joubert D 1999 Phys. Rev. B 59 1758
[34] Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244
[35] Menthfessel M, Paxton A T 1989 Phys. Rev. B 40 3616
[36] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188
-
[1] Morales A M, Lieber C M 1998 Science 279 208
[2] Tang Y H, Zhang Y F, Lee C S, Wang N, Yu D P, Bello I, Lee S T 1998 Mater. Res. Soc. Symp. Proc. 526 73
[3] Zhang J H, Gu F, Liu Q J, Gu B, Li M 2010 Acta Phys. Sin. 59 4226 (in Chinese) [张加宏, 顾芳, 刘清惓, 顾斌, 李敏 2010 物理学报 59 4226]
[4] Liang W H, Ding X C, Chu L Z, Deng Z C, Guo J X, Wu Z H, Wang Y L 2010 Acta Phys. Sin. 59 8071 (in Chinese) [梁伟华, 丁学成, 褚立志, 邓泽超, 郭建新, 吴转花, 王英龙 2010 物理学报 59 8071]
[5] Liang L, Xu Q F, Hu M L, Su H, Xiang G H, Zhou L B 2013 Acta Phys. Sin. 62 037301 (in Chinese) [梁磊, 徐琴芳, 忽满利, 孙浩, 向光华, 周利斌 2013 物理学报 62 037301]
[6] Wang M L, Zhang C X, Wu Z L, Jing X L, Xu H J 2014 Chin. Phys. B 23 067802
[7] Liu Y, Liang P, Shu H B, Cao D, Dong Q M, Wang L 2014 Chin. Phys. B 23 067304
[8] Xing Y J, Yu D P, Xi Z H, Xue Z Q 2002 Chin. Phys. 11 1047
[9] Holmes J D, Johnston K P, Doty R C 2000 Science 287 1471
[10] Cui Y, Duan X F, Hu J T 2000 Phys. Chem. 104 5213
[11] Baumer A, Stutzmann M S 2004 Appl. Phys. Lett. 85 943
[12] Li D Y, Wu Y Y, Shi L 2003 Appl. Phys. Lett. 83 2934
[13] Durgun E, Akman N, Ciraci S 2008 Phys. Rev. B 78 195116
[14] Durgun E, Çakır D, Akman N 2007 Phys. Rev. Lett. 99 256806
[15] Sen P, Glseren O, Yildirim T 2002 Phys. Rev. B 65 235433
[16] Menon M, Andriotis N, Froudakis G 2002 Nano Lett. 2 301
[17] Nishio K, Ozaki T, Morishita T 2010 Phys. Rev. B 81 115444
[18] Dumitrică T, Hua M, Yakobson B I 2004 Phys. Rev. B 70 241303
[19] Singh A K, Briere T M, Kumar V, Kawazoe Y 2003 Phys. Rev. Lett. 91 146802
[20] Jang Y R, Jo C, Lee J I 2005 IEEE Trans. Magn. 41 3118
[21] Berkdemir C, Gleeren O 2009 Phys. Rev. B 80 115334
[22] Vila L, Vincent P, Pra L D D, Pirio G, Minoux E, Gangloff L, Demoustier-Champagne S, Sarazin N, Ferain E, Legras R, Piraux L, Legagneux P 2004 Nano Lett. 4 521
[23] Zhao L Y, Liao K, Pynenburg M, Wong L, Heinig N, Thomas J P, Leung K T 2013 ACS Appl. Mater. Inter. 5 2410
[24] Tsai C I, Yeh P H, Wang C Y, Wu H W, Chen U S, Liu M Y, Wu W W, Wang Z L 2009 Cryst. Growth Des. 9 4514
[25] Seo K, Varadwaj K S K, Mohanty P, Lee S, Jo Y, Jung M H, Kim J, Kim B 2007 Nano Lett. 7 1240
[26] Seo K, Lee S, Yoon H, In J, Varadwaj K S K, Jo Y, Jung M H, Kim J, Kim B 2009 ACS Nano 3 1145
[27] Kresse G, Hafener J 1994 Phys. Rev. B 49 14251
[28] Kresse G, Furthmller J 1996 Comput. Mater. Sci. 6 15
[29] Payne M C, Teter M P, Arias T A, Allan D C, Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045
[30] Kresse G, Hafener J 1994 Phys. Rev. B 49 14251
[31] Blöchl P E 1994 Phys. Rev. B 50 17953
[32] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[33] Kresse G, Joubert D 1999 Phys. Rev. B 59 1758
[34] Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244
[35] Menthfessel M, Paxton A T 1989 Phys. Rev. B 40 3616
[36] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188
引用本文: |
Citation: |
计量
- 文章访问数: 1117
- PDF下载量: 384
- 被引次数: 0