搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

有机分子的结构与排列方式对原子电荷分布及静电作用的影响

张兆慧 李海鹏 毛仕春

有机分子的结构与排列方式对原子电荷分布及静电作用的影响

张兆慧, 李海鹏, 毛仕春
PDF
导出引用
导出核心图
  • 对由两个相同的长直链分子(CH3(CH2)5–R(R=COOH,CH3,OH)、CH3(CH2)4–COOH))呈镜面对称分布组成的四种模型,及由两个CH3(CH2 )5COOH分子平行分布组成的模型进行了量化计算,研究了分子间距、功能团、链长及排列方式对原子电荷分布及分子静电相互作用的影响. 结果表明:1) 分子中不同位置的亚甲基团(–CH2–)的C原子电荷各不相同. 2) 原子电荷不仅受到分子链长及功能团的影响,同时,当分子间距及排列方式发生改变时,原子电荷也发生改变;双分子模型较单分子模型的原子电荷变化较大. 3) 分子间静电作用由尾基功能团的极性决定,由强到弱为–COOH>–OH>–CH3,分子中其他原子对静电作用的贡献较小;分子链长的增加导致尾基功能团中电荷减少,从而使得分子间静电作用减弱.
    • 基金项目: 中央高校基本科研业务费专项资金(批准号:2013QNA34)和国家自然科学基金理论物理专项项目(批准号:11347123)资助的课题.
    [1]

    Zhang Zh H, Li H P, Han K 2013 Acta Phys. Sin. 62 158701(in Chinese) [张兆慧, 李海鹏, 韩奎 2013 物理学报 62 158701]

    [2]

    Michelle M F, Christina C, LISA E C, David M G 1996 J. Comp. Chem. 17 367

    [3]

    Tajkhorshid E, Sandor S 1999 J. Phys. Chem. B 103 5581

    [4]

    Lee J G, Jeong H Y, Lee H 2003 Bull. Korean. Chem. Soc. 24 369

    [5]

    Brian R W, Carston R W, Donald G T, Elizabeth A A 2008 J. Chem. Theory Comput. 4 1718

    [6]

    Oleg B, Grant D S, Thomas D S, Dmitry B 2008 J. Phys. Chem. B 112 7340742

    [7]

    Tu Y Q, Laaksonenes A 2001 Phys. Rev. E 64 026703

    [8]

    Zhang C R, Chen Y H, Wang D B, Wu Y Z, Chen H S 2008 , Chin. Phys. B 17 2938

    [9]

    Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J A,, Vreven Jr T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C, and Pople J A 2003 Gaussian 03, Revision B 03, Gaussian, Inc, Pittsburgh PA,

    [10]

    Lu T, Chen F W 2012 Acta Phys.-Chim. Sin. 28 1(in Chinese) [卢天, 陈飞武 2012 物理化学学报 28 1]

    [11]

    Martin F, Zipse H 2005 J. Comp. Chem. 26 97

    [12]

    Tang C M, Chen X, Deng K M, Hu F L, Huang D C, Xia H Y 2009 Acta Phys. Sin. 58 2675(in Chinese) [唐春梅, 陈宣, 邓开明, 胡凤兰, 黄德财, 夏海燕 2009 物理学报 58 2675]

    [13]

    Zhang L Z, Jiang S Y 2003 J. Chem. Phys. 119 765

    [14]

    Byeongwon P, Michael C, Mark J S, Gary S G 2003 Langmuir 19 9239

    [15]

    Zhang L Z, Leng Y S, Jiang S Y 2003 Langmuir 19 9742

  • [1]

    Zhang Zh H, Li H P, Han K 2013 Acta Phys. Sin. 62 158701(in Chinese) [张兆慧, 李海鹏, 韩奎 2013 物理学报 62 158701]

    [2]

    Michelle M F, Christina C, LISA E C, David M G 1996 J. Comp. Chem. 17 367

    [3]

    Tajkhorshid E, Sandor S 1999 J. Phys. Chem. B 103 5581

    [4]

    Lee J G, Jeong H Y, Lee H 2003 Bull. Korean. Chem. Soc. 24 369

    [5]

    Brian R W, Carston R W, Donald G T, Elizabeth A A 2008 J. Chem. Theory Comput. 4 1718

    [6]

    Oleg B, Grant D S, Thomas D S, Dmitry B 2008 J. Phys. Chem. B 112 7340742

    [7]

    Tu Y Q, Laaksonenes A 2001 Phys. Rev. E 64 026703

    [8]

    Zhang C R, Chen Y H, Wang D B, Wu Y Z, Chen H S 2008 , Chin. Phys. B 17 2938

    [9]

    Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J A,, Vreven Jr T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C, and Pople J A 2003 Gaussian 03, Revision B 03, Gaussian, Inc, Pittsburgh PA,

    [10]

    Lu T, Chen F W 2012 Acta Phys.-Chim. Sin. 28 1(in Chinese) [卢天, 陈飞武 2012 物理化学学报 28 1]

    [11]

    Martin F, Zipse H 2005 J. Comp. Chem. 26 97

    [12]

    Tang C M, Chen X, Deng K M, Hu F L, Huang D C, Xia H Y 2009 Acta Phys. Sin. 58 2675(in Chinese) [唐春梅, 陈宣, 邓开明, 胡凤兰, 黄德财, 夏海燕 2009 物理学报 58 2675]

    [13]

    Zhang L Z, Jiang S Y 2003 J. Chem. Phys. 119 765

    [14]

    Byeongwon P, Michael C, Mark J S, Gary S G 2003 Langmuir 19 9239

    [15]

    Zhang L Z, Leng Y S, Jiang S Y 2003 Langmuir 19 9742

  • [1] 王斌, 张鹤鸣, 胡辉勇, 张玉明, 舒斌, 周春宇, 李妤晨, 吕懿. 应变Si NMOS积累区电容特性研究. 物理学报, 2013, 62(5): 057103. doi: 10.7498/aps.62.057103
    [2] 秦世荣, 赵琪, 程振国, 苏丽霞, 单崇新. 纳米金刚石的分散、修饰及载药应用研究. 物理学报, 2018, 67(16): 166801. doi: 10.7498/aps.67.20180862
    [3] 盛洁, 王开宇, 马贝贝, 朱涛, 蒋中英. 多聚赖氨酸诱导的负电性磷脂巨囊泡形变. 物理学报, 2018, 67(15): 158701. doi: 10.7498/aps.67.20180456
    [4] 朱频频, 刘建胜, 徐至展. Ar原子团簇与飞秒强激光相互作用产生的高能离子计算. 物理学报, 2004, 53(3): 803-807. doi: 10.7498/aps.53.803
    [5] 李泽清, 黄胜年, 卓益忠, 喻传赞. 裂变碎块的电荷分布与碎块动能. 物理学报, 1966, 127(2): 245-249. doi: 10.7498/aps.22.245
    [6] 熊小明, 周世勋. 分数量子Hall体系的电荷分布. 物理学报, 1988, 37(3): 511-514. doi: 10.7498/aps.37.511
    [7] 马红孺. 胶体排空相互作用理论与计算. 物理学报, 2016, 65(18): 184701. doi: 10.7498/aps.65.184701
    [8] 张邦俊, 翟国庆, 叶高翔. 具有排斥相互作用的原子团簇非平衡系统研究. 物理学报, 2005, 54(4): 1557-1563. doi: 10.7498/aps.54.1557
    [9] 许晓军, 王凤飞, 蔡萍根, 魏高尧, 隋成华. 基于幂次相互作用的二维磁性团簇耦合能研究. 物理学报, 2007, 56(12): 6881-6885. doi: 10.7498/aps.56.6881
    [10] 孙彦乾, 陈黎明, 张璐, 毛婧一, 刘峰, 李大章, 刘成, 李伟昌, 王兆华, 李英骏, 魏志义, 张杰. 超强激光与Ar团簇相互作用中X射线的研究. 物理学报, 2012, 61(7): 075206. doi: 10.7498/aps.61.075206
    [11] 原晓霞, 仲佳勇. 双等离子体团相互作用的磁流体力学模拟. 物理学报, 2017, 66(7): 075202. doi: 10.7498/aps.66.075202
    [12] 杨百方, 缪竞威, 杨朝文, 师勉恭, 唐阿友, 刘晓东. H3+团簇离子与固体相互作用. 物理学报, 2002, 51(1): 55-62. doi: 10.7498/aps.51.55
    [13] 杨鹏飞, 陈文学. 超导体界面层的电场电荷分布及起源. 物理学报, 2006, 55(12): 6622-6629. doi: 10.7498/aps.55.6622
    [14] 曾谨言. 原子核电荷分布半径及结合能. 物理学报, 1957, 38(5): 357-364. doi: 10.7498/aps.13.357
    [15] 廖瑞金, 伍飞飞, 刘兴华, 杨帆, 杨丽君, 周之, 翟蕾. 大气压直流正电晕放电暂态空间电荷分布仿真研究. 物理学报, 2012, 61(24): 245201. doi: 10.7498/aps.61.245201
    [16] 刘汉昭. 原子核内电荷分布与各种相关实验的比较. 物理学报, 1956, 1601(2): 177-181.
    [17] 孙雅丽, 张冶文, Stephane Hole, 马朋, 郭聪, 郑飞虎, 安振连. 同轴结构中压力波法测量空间电荷分布的物理模型研究. 物理学报, 2017, 66(12): 127701. doi: 10.7498/aps.66.127701
    [18] 陈正林, R. Kodama, 张 翼, 李玉同, 张 杰. 超强激光与等离子体相互作用产生中子的计算. 物理学报, 2005, 54(10): 4799-4802. doi: 10.7498/aps.54.4799
    [19] 余春日, 申传胜, 宋晓书, 程新路, 杨向东. Ne-HF体系的相互作用势及散射截面的密耦计算. 物理学报, 2008, 57(6): 3446-3451. doi: 10.7498/aps.57.3446
    [20] 于冬琪, 张朝晖. 带状碳单层与石墨基底之间相互作用的第一性原理计算. 物理学报, 2011, 60(3): 036104. doi: 10.7498/aps.60.036104
  • 引用本文:
    Citation:
计量
  • 文章访问数:  574
  • PDF下载量:  301
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-01
  • 修回日期:  2014-05-29
  • 刊出日期:  2014-10-05

有机分子的结构与排列方式对原子电荷分布及静电作用的影响

  • 1. 宿迁学院基础部, 宿迁 223800;
  • 2. 中国矿业大学理学院, 徐州 221008
    基金项目: 

    中央高校基本科研业务费专项资金(批准号:2013QNA34)和国家自然科学基金理论物理专项项目(批准号:11347123)资助的课题.

摘要: 对由两个相同的长直链分子(CH3(CH2)5–R(R=COOH,CH3,OH)、CH3(CH2)4–COOH))呈镜面对称分布组成的四种模型,及由两个CH3(CH2 )5COOH分子平行分布组成的模型进行了量化计算,研究了分子间距、功能团、链长及排列方式对原子电荷分布及分子静电相互作用的影响. 结果表明:1) 分子中不同位置的亚甲基团(–CH2–)的C原子电荷各不相同. 2) 原子电荷不仅受到分子链长及功能团的影响,同时,当分子间距及排列方式发生改变时,原子电荷也发生改变;双分子模型较单分子模型的原子电荷变化较大. 3) 分子间静电作用由尾基功能团的极性决定,由强到弱为–COOH>–OH>–CH3,分子中其他原子对静电作用的贡献较小;分子链长的增加导致尾基功能团中电荷减少,从而使得分子间静电作用减弱.

English Abstract

参考文献 (15)

目录

    /

    返回文章
    返回