搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于单模光纤的交叉相位调制型频率分辨光学开关超短脉冲测量

马晓璐 李培丽 郭海莉 张一 朱天阳 曹凤娇

基于单模光纤的交叉相位调制型频率分辨光学开关超短脉冲测量

马晓璐, 李培丽, 郭海莉, 张一, 朱天阳, 曹凤娇
PDF
导出引用
  • 利用单模光纤中的光弹效应和交叉相位调制(XPM)效应, 提出了一种频率分辨光学开关法测量超短脉冲的新方案. 在本方案中, 单模光纤的前一部分产生可变延迟, 后一部分作为非线性介质产生非线性效应. 该方案只需一根单模光纤, 无须复杂的光路校准, 结构简单, 损耗低; 光纤中的XPM效应易发生, 无须相位匹配. 对提出的方案进行了数值模拟, 采用基于矩阵的主元素广义投影算法, 恢复出待测脉冲的幅度和相位信息, 并研究了光纤长度和待测超短脉冲的脉冲宽度对测量结果的影响. 结果表明: 测量准确度随着光纤长度的增加而提高, 选取长度为2 km的光纤, 就可以实现对超短脉冲的准确测量; 本文方案适用于脉冲宽度不小于80 fs 的超短光脉冲的测量.
    • 基金项目: 国家自然科学基金(批准号: 61275067, 61302026)、高等学校博士学科点专项科研基金(批准号: 20123223120005)、江苏省自然科学基金(批准号: BK2012830, BK2012432)和江苏省普通高校研究生科研创新计划(批准号: CXLX13_448)资助的课题.
    [1]

    Simon J D 1989 Rev. Sci. Instrum. 60 3597

    [2]

    Tien E K, Sang X Z, Qing F, Song Q, Boyraz O 2009 Appl. Phys. Lett. 95 051101

    [3]

    Yu Y L, Mu C J, Bai J T, Hou X 2005 Laser Technol. 29 358 (in Chinese) [于云龙, 穆参军, 白晋涛, 侯洵 2005 激光技术 29 358]

    [4]

    Diels J C M, Fontaine J J 1985 Appl. Opt. 24 1270

    [5]

    Trebino R 2000 Frequency-Resolved Optical Gating: the Measurement of Ultrashort Laser Pulses (1st Ed.) (Berlin: Springer)

    [6]

    Walmsley I A, Dorrer C 2009 Adv. Opt. Photon. 1 308

    [7]

    Iaconis C, Walmsley I A 1999 IEEE J. Quantum Electron. 35 501

    [8]

    Delong K W, Trebino R 1994 Opt. Soc. Am. B 11 10

    [9]

    Wang Z H, Wei Z Y, Teng H, Wang P, Zhang J 2003 Acta Phys. Sin. 52 362 (in Chinese) [王兆华, 魏志义, 滕浩, 王鹏, 张杰 2003 物理学报 52 362]

    [10]

    Wen R H 2012 Appl. Laser 32 143 (in Chinese) [文汝红 2012 应用激光 32 143]

    [11]

    Honzatko P, Kanka J, Vrany B 2004 Opt. Express 12 6046

    [12]

    Pang J 2012 M. S. Dissertation (Beijing: Beijing University of Posts and Telecommunications) (in Chinese) [庞杰 2012 硕士学位论文 (北京: 北京邮电大学)]

    [13]

    Wang Z H, Wei Z Y, Zhang J 2005 Acta Phys. Sin. 54 1194 (in Chinese) [王兆华, 魏志义, 张杰 2005 物理学报 54 1194]

    [14]

    Kane D J, Trebino R 1993 IEEE J. Quantum Electron. 29 571

    [15]

    Zhang J Y, Lee C K, Huang J Y, Pan C L 2004 Opt. Express 12 574

    [16]

    Selm R, Krauss G, Leitenstorfer A, Zumbusch A 2012 Opt. Express 20 5955

    [17]

    Ruan Y L, Xiang Q, Huang D X 1996 Chin. J. Lasers 23 901 (in Chinese) [阮迎澜, 向清, 黄德修 1996 中国激光 23 901]

    [18]

    Agrawal G P, (translated by Jia D F, Yu Z H, Tan B, Hu Z Y) 2002 Nonlinear Fiber Optics and Applications of Nonlinear Fiber Optics (3rd Ed.) (Beijing: Publishing House of Electronics Industry) (in Chinese) [阿戈沃 G P著 (贾东方, 余震虹, 谭斌, 胡智勇 译) 2002 非线性光纤光学原理及应用 (北京: 电子工业出版社)]

    [19]

    Zhong X Q, Xiang P A 2007 Chin. Opt. Lett. 5 534

    [20]

    Wang D J, Zhang T 2011 Chin. Phys. B 20 087202

    [21]

    Kane D J 1998 IEEE J. Quantum Electron. 4 278

    [22]

    Wan J, Huang Y Q 2002 Chin. J. Sci. Instrum. 23 111 (in Chinese) [万瑾, 黄元庆 2002 仪器仪表学报 23 111]

    [23]

    Qiao N S, Zou B J 2013 Chin. Phys. B 22 014203

    [24]

    Fan T Y, Xie L Y, Fan L, Wang Q Z 2011 Chin. Phys. B 20 076102

  • [1]

    Simon J D 1989 Rev. Sci. Instrum. 60 3597

    [2]

    Tien E K, Sang X Z, Qing F, Song Q, Boyraz O 2009 Appl. Phys. Lett. 95 051101

    [3]

    Yu Y L, Mu C J, Bai J T, Hou X 2005 Laser Technol. 29 358 (in Chinese) [于云龙, 穆参军, 白晋涛, 侯洵 2005 激光技术 29 358]

    [4]

    Diels J C M, Fontaine J J 1985 Appl. Opt. 24 1270

    [5]

    Trebino R 2000 Frequency-Resolved Optical Gating: the Measurement of Ultrashort Laser Pulses (1st Ed.) (Berlin: Springer)

    [6]

    Walmsley I A, Dorrer C 2009 Adv. Opt. Photon. 1 308

    [7]

    Iaconis C, Walmsley I A 1999 IEEE J. Quantum Electron. 35 501

    [8]

    Delong K W, Trebino R 1994 Opt. Soc. Am. B 11 10

    [9]

    Wang Z H, Wei Z Y, Teng H, Wang P, Zhang J 2003 Acta Phys. Sin. 52 362 (in Chinese) [王兆华, 魏志义, 滕浩, 王鹏, 张杰 2003 物理学报 52 362]

    [10]

    Wen R H 2012 Appl. Laser 32 143 (in Chinese) [文汝红 2012 应用激光 32 143]

    [11]

    Honzatko P, Kanka J, Vrany B 2004 Opt. Express 12 6046

    [12]

    Pang J 2012 M. S. Dissertation (Beijing: Beijing University of Posts and Telecommunications) (in Chinese) [庞杰 2012 硕士学位论文 (北京: 北京邮电大学)]

    [13]

    Wang Z H, Wei Z Y, Zhang J 2005 Acta Phys. Sin. 54 1194 (in Chinese) [王兆华, 魏志义, 张杰 2005 物理学报 54 1194]

    [14]

    Kane D J, Trebino R 1993 IEEE J. Quantum Electron. 29 571

    [15]

    Zhang J Y, Lee C K, Huang J Y, Pan C L 2004 Opt. Express 12 574

    [16]

    Selm R, Krauss G, Leitenstorfer A, Zumbusch A 2012 Opt. Express 20 5955

    [17]

    Ruan Y L, Xiang Q, Huang D X 1996 Chin. J. Lasers 23 901 (in Chinese) [阮迎澜, 向清, 黄德修 1996 中国激光 23 901]

    [18]

    Agrawal G P, (translated by Jia D F, Yu Z H, Tan B, Hu Z Y) 2002 Nonlinear Fiber Optics and Applications of Nonlinear Fiber Optics (3rd Ed.) (Beijing: Publishing House of Electronics Industry) (in Chinese) [阿戈沃 G P著 (贾东方, 余震虹, 谭斌, 胡智勇 译) 2002 非线性光纤光学原理及应用 (北京: 电子工业出版社)]

    [19]

    Zhong X Q, Xiang P A 2007 Chin. Opt. Lett. 5 534

    [20]

    Wang D J, Zhang T 2011 Chin. Phys. B 20 087202

    [21]

    Kane D J 1998 IEEE J. Quantum Electron. 4 278

    [22]

    Wan J, Huang Y Q 2002 Chin. J. Sci. Instrum. 23 111 (in Chinese) [万瑾, 黄元庆 2002 仪器仪表学报 23 111]

    [23]

    Qiao N S, Zou B J 2013 Chin. Phys. B 22 014203

    [24]

    Fan T Y, Xie L Y, Fan L, Wang Q Z 2011 Chin. Phys. B 20 076102

  • [1] 向望华, 陈晓伟, 谈斌, 张贵忠. 利用单模光纤中的交叉相位调制产生单周期化脉冲的研究. 物理学报, 2004, 53(1): 137-144. doi: 10.7498/aps.53.137
    [2] 黄杭东, 滕浩, 詹敏杰, 许思源, 黄沛, 朱江峰, 魏志义. 基于瞬态光栅频率分辨光学开关法测量飞秒脉冲的研究. 物理学报, 2019, 68(7): 070602. doi: 10.7498/aps.68.20190165
    [3] 陈海涛, 夏光琼, 吴正茂. 基于脉冲对的交叉相位调制脉冲压缩中离散效应的抑制. 物理学报, 2005, 54(3): 1167-1171. doi: 10.7498/aps.54.1167
    [4] 李博, 娄淑琴, 谭中伟, 苏伟. 两种基于交叉相位调制的光脉冲压缩方案 . 物理学报, 2012, 61(19): 194203. doi: 10.7498/aps.61.194203
    [5] 文锦辉, 胡婷, 吴琴菲. 快速扫描频率分辨光学开关装置测量超短激光脉冲. 物理学报, 2019, 68(11): 110601. doi: 10.7498/aps.68.20190034
    [6] 吕志国, 杨直, 李峰, 李强龙, 王屹山, 杨小君. 基于光纤中超短脉冲非线性传输机理与特定光谱选择技术的多波长飞秒激光的产生. 物理学报, 2018, 67(18): 184205. doi: 10.7498/aps.67.20181026
    [7] 任立勇, 王士鹤, 刘宇. 光纤中基于双宽带抽运的受激布里渊散射增益谱展宽及慢光传输中脉冲失真减小的理论研究. 物理学报, 2009, 58(6): 3943-3948. doi: 10.7498/aps.58.3943
    [8] 王清月, 栗岩锋, 胡明列, 李曙光, 周桂耀, 邢光龙, 侯蓝田. 微结构光纤中超短激光脉冲传输的数值模拟. 物理学报, 2005, 54(4): 1599-1606. doi: 10.7498/aps.54.1599
    [9] 邓玉强, 柴 路, 王清月, 张志刚. 小波变换重建超短脉冲光谱相位的误差分析. 物理学报, 2005, 54(9): 4176-4181. doi: 10.7498/aps.54.4176
    [10] 王清月, 张志刚, 邓玉强. 频率分辨光学开关法行迹相位还原的时频分析. 物理学报, 2006, 55(12): 6454-6458. doi: 10.7498/aps.55.6454
    [11] 王少奇, 邓颖, 张永亮, 李超, 王方, 康民强, 罗韵, 薛海涛, 胡东霞, 粟敬钦, 郑奎兴, 朱启华. 掺Er3+氟化物光纤振荡器中红外超短脉冲的产生. 物理学报, 2016, 65(4): 044206. doi: 10.7498/aps.65.044206
    [12] 王清月, 曹士英, 张志刚, 于 靖, 徐 涛, 邓玉强. 小波变换提取放大超短脉冲载波-包络相位的研究. 物理学报, 2008, 57(11): 7017-7021. doi: 10.7498/aps.57.7017
    [13] 曾思良, 陈 高, 杨玉军, 朱颀人, 陈基根. 载波相位对超短脉冲谐波谱的影响. 物理学报, 2008, 57(7): 4104-4109. doi: 10.7498/aps.57.4104
    [14] 刘建国, 开桂云, 薛力芳, 张春书, 刘艳格, 王 志, 郭宏雷, 李 燕, 孙婷婷, 袁树忠, 董孝义. 基于高非线性光子晶体光纤Sagnac环形镜的全光开关. 物理学报, 2007, 56(2): 941-945. doi: 10.7498/aps.56.941
    [15] 孙剑, 李唐军, 王目光, 贾楠, 石彦超, 王春灿, 冯素春. 高非线性光纤正常色散区脉冲尾部非频移分量演化. 物理学报, 2019, 68(11): 114210. doi: 10.7498/aps.68.20190111
    [16] 冯则胡, 傅喜泉, 章礼富, 徐慧文, 文双春. 超短脉冲激光空间调制下小尺度自聚焦的实验研究. 物理学报, 2008, 57(4): 2253-2259. doi: 10.7498/aps.57.2253
    [17] 邓玉强, 王清月, 吴祖斌, 张志刚. 载波-包络相位对于基频光与其自身倍频光脉冲合成的影响. 物理学报, 2006, 55(2): 737-742. doi: 10.7498/aps.55.737
    [18] 李博, 谭中伟, 张晓兴. 利用电光相位调制和交叉相位调制制作时间透镜的实验及仿真分析. 物理学报, 2011, 60(8): 084204. doi: 10.7498/aps.60.084204
    [19] 步 扬, 王向朝. 基于频域相位共轭技术的交叉相位调制所致失真的复原. 物理学报, 2005, 54(10): 4747-4753. doi: 10.7498/aps.54.4747
    [20] 李博, 谭中伟, 张晓兴. 利用交叉相位调制和四波混频制作的时间透镜的仿真分析. 物理学报, 2012, 61(1): 014203. doi: 10.7498/aps.61.014203
  • 引用本文:
    Citation:
计量
  • 文章访问数:  821
  • PDF下载量:  278
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-22
  • 修回日期:  2014-08-05
  • 刊出日期:  2014-12-05

基于单模光纤的交叉相位调制型频率分辨光学开关超短脉冲测量

  • 1. 南京邮电大学光电工程学院, 南京 210003
    基金项目: 

    国家自然科学基金(批准号: 61275067, 61302026)、高等学校博士学科点专项科研基金(批准号: 20123223120005)、江苏省自然科学基金(批准号: BK2012830, BK2012432)和江苏省普通高校研究生科研创新计划(批准号: CXLX13_448)资助的课题.

摘要: 利用单模光纤中的光弹效应和交叉相位调制(XPM)效应, 提出了一种频率分辨光学开关法测量超短脉冲的新方案. 在本方案中, 单模光纤的前一部分产生可变延迟, 后一部分作为非线性介质产生非线性效应. 该方案只需一根单模光纤, 无须复杂的光路校准, 结构简单, 损耗低; 光纤中的XPM效应易发生, 无须相位匹配. 对提出的方案进行了数值模拟, 采用基于矩阵的主元素广义投影算法, 恢复出待测脉冲的幅度和相位信息, 并研究了光纤长度和待测超短脉冲的脉冲宽度对测量结果的影响. 结果表明: 测量准确度随着光纤长度的增加而提高, 选取长度为2 km的光纤, 就可以实现对超短脉冲的准确测量; 本文方案适用于脉冲宽度不小于80 fs 的超短光脉冲的测量.

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回