搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用非传统螺旋相位调控高阶涡旋光束的拓扑结构

王亚东 甘雪涛 俱沛 庞燕 袁林光 赵建林

利用非传统螺旋相位调控高阶涡旋光束的拓扑结构

王亚东, 甘雪涛, 俱沛, 庞燕, 袁林光, 赵建林
PDF
导出引用
导出核心图
  • 本文提出一种利用非传统螺旋相位调控高阶涡旋光束拓扑结构的方法.数值模拟并实验研究了具有不均匀旋转梯度的非传统螺旋相位对高阶涡旋光束的调控行为.结果表明, 携带有非传统螺旋相位的高阶涡旋光束在传输过程中, 将退化为沿一条直线排列的多个一阶相位奇点, 并且, 这种非传统螺旋相位对高阶涡旋光束的调控特性, 可抑制相位噪声等扰动所引起的拓扑结构随机退化现象.本文的结论为涡旋光束拓扑结构的调控提供了一种可行的新途径, 在基于涡旋光束的光学通信、光学操控等方面具有潜在应用.
    • 基金项目: 国家重点基础研究发展计划(973)计划(批准号: 2012CB921900)和国家自然科学基金(批准号: 61377035, 61205001)资助的课题.
    [1]

    Cullet P, Gil L, Rocca F 1989 Opt. Commun. 73 403

    [2]

    Kivshar Y S, Ostrovskaya E A 2001 Opt. Photon. News 12 24

    [3]

    Nye J F, Berry M V 1974 Phys. Engin. Sci. 336 165

    [4]

    Ding P F, Pu J X 2012 Acta Phys. Sin. 61 174201 (in Chinese) [丁攀峰, 蒲继雄 2012 物理学报 61 174201]

    [5]

    Fang G J, Sun S H, Pu J X 2012 Acta Phys. Sin. 61 064210 (in Chinese) [方桂娟, 孙顺红, 蒲继雄 2012 物理学报 61 064210]

    [6]

    Gecevičius M, Drevinskas R, Beresna M, Kazansky P 2014 Appl. Phys. Lett. 104 231110

    [7]

    Chen C R, Yeh C H, Shih M F 2014 Opt. Express 22 3180

    [8]

    Dholakia K, Čžmár T 2011 Nature Photon. 5 335

    [9]

    Fickler R, Lapkiewicz R, Plick W N, Krenn M, Schaeff C, Ramelow S, Zeilinger A 2012 Science 338 640

    [10]

    Rodenburg B, Mirhosseini M, Malik M, Rodenburg B, Mirhosseini M, Malik M, Magaña-LoaizaO, Yanakas M, Maher L, Steinhoff N, Tyler G, Boyd R 2014 New Journal of Phys. 16 033020

    [11]

    Lehmuskero A, Li Y, Johansson P 2014 Opt. Express 22 434

    [12]

    Liu Y, Li H N, Hu Y, Du A 2014 Chin. Phys. B 23 087501

    [13]

    Zhou Z H, Guo Y K, Zhu L 2014 Chin. Phys. B 23 044201

    [14]

    Yarmchuk E J, Cordon M J V, Packard R E 1979 Phys. Rev. Lett. 43 214

    [15]

    Gan X, Zhao J, Liu S, Fang L 2009 Chin. Opt. Lett. 7 1142

    [16]

    Mamaev A V, Saffman M, Zozulya A 1997 Phys. Rev. Lett. 78 2108

    [17]

    Gan X, Zhang P, Liu S, Zheng Y, Zhao J, Chen Z G 2009 Opt. Express 17 23130

    [18]

    Vaity P, Singh R P 2012 Opt. Lett. 37 1301

    [19]

    Denisenko V, Shvedov V, Desyatnikov A S, Neshev D, Krolikowski W, Volyar A, Soskin M, Kivshar Y S 2009 Opt. Express 17 23374

    [20]

    Vuong L, Grow T, Ishaaya A, Gaeta A, Eliel E, Fibich G 2006 Phys. Rev. Lett. 96 133901

    [21]

    Ouyang S G 2013 Acta Phys. Sin. 62 040504 (in Chinese) [欧阳世根 2013 物理学报 62 040504]

    [22]

    Malik M, O'Sullivan M, Rodenburg B, Mirhosseini M, Leach J, Lavery M P, Padgett M J, Boyd R W 2012 Opt. Express 20 13195

    [23]

    Reddy S G, Prabhakar S, Aadhi A, Banerji J, Singh R P 2014 JOSA A 31 1295

    [24]

    Anguita J A, Rodriguez H, Quezada C 2014 Aerospace Conference IEEE 2014 p1

    [25]

    Cui Q, Li M, Yu Z 2014 Opt. Commun. 329 10

    [26]

    Dennis M R, O'Holleran K, Padgett M J 2009 Progress in Opt. 53 293

    [27]

    Molina-Terriza G, Wright E M, Torner L 2001 Opt. Lett. 26 163

    [28]

    Kim G H, Lee H J, Kim J U 2003 JOSA B 20 351

    [29]

    Basistiy I V, Soskin M S, Vasnetsov M V 1995 Opt. Commun. 119 604

    [30]

    Sacks Z S, Rozas D, Swartzlander G A 1998 JOSA B 15 2226

    [31]

    Ostrovsky A S, Rickenstorff-Parrao C, Arrizon V 2013 Opt. Lett. 38 534

    [32]

    Palacios D, Rozas D, Swartzlander Jr G A 2002 Phys. Rev. Lett. 88 103902

    [33]

    Nye J F, Berry M V 1974 Mathematical and Physical Sciences 336 165

    [34]

    Cui Q, Li M, Yu Z 2014 Opt. Commun. 329 10

  • [1]

    Cullet P, Gil L, Rocca F 1989 Opt. Commun. 73 403

    [2]

    Kivshar Y S, Ostrovskaya E A 2001 Opt. Photon. News 12 24

    [3]

    Nye J F, Berry M V 1974 Phys. Engin. Sci. 336 165

    [4]

    Ding P F, Pu J X 2012 Acta Phys. Sin. 61 174201 (in Chinese) [丁攀峰, 蒲继雄 2012 物理学报 61 174201]

    [5]

    Fang G J, Sun S H, Pu J X 2012 Acta Phys. Sin. 61 064210 (in Chinese) [方桂娟, 孙顺红, 蒲继雄 2012 物理学报 61 064210]

    [6]

    Gecevičius M, Drevinskas R, Beresna M, Kazansky P 2014 Appl. Phys. Lett. 104 231110

    [7]

    Chen C R, Yeh C H, Shih M F 2014 Opt. Express 22 3180

    [8]

    Dholakia K, Čžmár T 2011 Nature Photon. 5 335

    [9]

    Fickler R, Lapkiewicz R, Plick W N, Krenn M, Schaeff C, Ramelow S, Zeilinger A 2012 Science 338 640

    [10]

    Rodenburg B, Mirhosseini M, Malik M, Rodenburg B, Mirhosseini M, Malik M, Magaña-LoaizaO, Yanakas M, Maher L, Steinhoff N, Tyler G, Boyd R 2014 New Journal of Phys. 16 033020

    [11]

    Lehmuskero A, Li Y, Johansson P 2014 Opt. Express 22 434

    [12]

    Liu Y, Li H N, Hu Y, Du A 2014 Chin. Phys. B 23 087501

    [13]

    Zhou Z H, Guo Y K, Zhu L 2014 Chin. Phys. B 23 044201

    [14]

    Yarmchuk E J, Cordon M J V, Packard R E 1979 Phys. Rev. Lett. 43 214

    [15]

    Gan X, Zhao J, Liu S, Fang L 2009 Chin. Opt. Lett. 7 1142

    [16]

    Mamaev A V, Saffman M, Zozulya A 1997 Phys. Rev. Lett. 78 2108

    [17]

    Gan X, Zhang P, Liu S, Zheng Y, Zhao J, Chen Z G 2009 Opt. Express 17 23130

    [18]

    Vaity P, Singh R P 2012 Opt. Lett. 37 1301

    [19]

    Denisenko V, Shvedov V, Desyatnikov A S, Neshev D, Krolikowski W, Volyar A, Soskin M, Kivshar Y S 2009 Opt. Express 17 23374

    [20]

    Vuong L, Grow T, Ishaaya A, Gaeta A, Eliel E, Fibich G 2006 Phys. Rev. Lett. 96 133901

    [21]

    Ouyang S G 2013 Acta Phys. Sin. 62 040504 (in Chinese) [欧阳世根 2013 物理学报 62 040504]

    [22]

    Malik M, O'Sullivan M, Rodenburg B, Mirhosseini M, Leach J, Lavery M P, Padgett M J, Boyd R W 2012 Opt. Express 20 13195

    [23]

    Reddy S G, Prabhakar S, Aadhi A, Banerji J, Singh R P 2014 JOSA A 31 1295

    [24]

    Anguita J A, Rodriguez H, Quezada C 2014 Aerospace Conference IEEE 2014 p1

    [25]

    Cui Q, Li M, Yu Z 2014 Opt. Commun. 329 10

    [26]

    Dennis M R, O'Holleran K, Padgett M J 2009 Progress in Opt. 53 293

    [27]

    Molina-Terriza G, Wright E M, Torner L 2001 Opt. Lett. 26 163

    [28]

    Kim G H, Lee H J, Kim J U 2003 JOSA B 20 351

    [29]

    Basistiy I V, Soskin M S, Vasnetsov M V 1995 Opt. Commun. 119 604

    [30]

    Sacks Z S, Rozas D, Swartzlander G A 1998 JOSA B 15 2226

    [31]

    Ostrovsky A S, Rickenstorff-Parrao C, Arrizon V 2013 Opt. Lett. 38 534

    [32]

    Palacios D, Rozas D, Swartzlander Jr G A 2002 Phys. Rev. Lett. 88 103902

    [33]

    Nye J F, Berry M V 1974 Mathematical and Physical Sciences 336 165

    [34]

    Cui Q, Li M, Yu Z 2014 Opt. Commun. 329 10

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1654
  • PDF下载量:  4619
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-25
  • 修回日期:  2014-08-10
  • 刊出日期:  2015-02-05

利用非传统螺旋相位调控高阶涡旋光束的拓扑结构

  • 1. 西北工业大学理学院, 陕西省光信息技术重点实验室, 空间应用物理与化学教育部重点实验室, 西安 710072
    基金项目: 

    国家重点基础研究发展计划(973)计划(批准号: 2012CB921900)和国家自然科学基金(批准号: 61377035, 61205001)资助的课题.

摘要: 本文提出一种利用非传统螺旋相位调控高阶涡旋光束拓扑结构的方法.数值模拟并实验研究了具有不均匀旋转梯度的非传统螺旋相位对高阶涡旋光束的调控行为.结果表明, 携带有非传统螺旋相位的高阶涡旋光束在传输过程中, 将退化为沿一条直线排列的多个一阶相位奇点, 并且, 这种非传统螺旋相位对高阶涡旋光束的调控特性, 可抑制相位噪声等扰动所引起的拓扑结构随机退化现象.本文的结论为涡旋光束拓扑结构的调控提供了一种可行的新途径, 在基于涡旋光束的光学通信、光学操控等方面具有潜在应用.

English Abstract

参考文献 (34)

目录

    /

    返回文章
    返回