搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

同位素效应对H+NH→N+H2反应的立体动力学性质的影响

王茗馨 王美山 杨传路 刘佳 马晓光 王立志

同位素效应对H+NH→N+H2反应的立体动力学性质的影响

王茗馨, 王美山, 杨传路, 刘佳, 马晓光, 王立志
PDF
导出引用
  • 基于翟红生和韩克利给出的势能面[Zhai H S, Han K L 2011 J. Chem. Phys. 135 104314], 运用准经典轨线方法对H+NH及其同位素取代反应的立体动力学性质进行了理论研究. 分别计算并讨论了碰撞能Ec=8和16 kcal/mol时反应的极化微分反应截面、两矢量k-j'相关分布函数P(θr)、 三矢量 k- k'- j'相关分布函数P(φr)、空间分布函数P(θr, φr). 结果表明, 对于上述的两个碰撞能, 由于同位素取代反应中质量因子的不同, 同位素效应对H+NH反应的立体动力学性质的影响很明显.
    • 基金项目: 国家自然科学基金(批准号: 11474142, 11074103)资助的课题.
    [1]

    Koshi M, Yoshimura M, Fukuda K, Matsui H, Saito K, Watanabe M, Imamura A, Chen C X 1990 J. Chem. Phys. 93 8703

    [2]

    Davidson D F, Hanson R K 1990 Int. J. Chem. Kinet. 22 843

    [3]

    Pascual R Z, Schatz G C, Lendvay G, Troya D 2002 J. Phys. Chem. A 106 4125

    [4]

    Adam L, Hack W, Zhu H, Qu Z W, Schinke R 2005 J. Chem. Phys. 122 114301

    [5]

    Poveda L A, Varandas A J C 2005 Phys. Chem. Chem. Phys. 7 2867

    [6]

    Han B R, Yang H, Zheng Y J, Varandas A J C 2010 Chem. Phys. Lett. 493 225

    [7]

    Zhai H S, Han K L 2011 J. Chem. Phys. 135 104314

    [8]

    He D, Wang M S, Yang C L, Jiang Z J 2013 Chin. Phys. B 22 068201

    [9]

    Wei Q 2014 Chin. Phys. B 23 023401

    [10]

    Li Z, Xie C J, Jiang B, Xie D Q, Liu L, Sun Z G, Zhang D H, Guo H 2011 J. Chem. Phys. 134 134303

    [11]

    Zhang W Q, Cong S L, Zhang C H, Xu X S, Chen M D 2009 J. Phys. Chem. A 113 4192

    [12]

    Han K L, Zheng X G, Sun B F, He G Z, Zhang R Q 1991 Chem. Phys. Lett. 181 474

    [13]

    Han K L, Zhang L, Xu D L, He G Z, Lou N Q 2001 J. Phys. Chem. A 105 2956

    [14]

    Duan L H, Zhang W Q, Xu X S, Cong S L, Chen M D 2009 Mol. Phys. 107 2579

    [15]

    Xiao J, Yang C L, Wang M S 2012 Chin. Phys. B 21 043101

    [16]

    Brouard M, Burak I, Hughes D W, Kalogerakis K S, Simons J P, Stavros V 2000 J. Chem. Phys. 113 3173

    [17]

    Li X H, Wang M S, Pino I, Yang C L, Ma L Z 2009 Phys. Chem. Chem. Phys. 11 10438

    [18]

    Zhang J, Chu T S, Dong S L, Yuan S P, Fu A P, Duan Y B 2011 Chin. Phys. Lett. 28 093403

    [19]

    Jiang Z J, Wang M S, Yang C L, He D 2013 Chem. Phys. 415 8

    [20]

    Wang M L, Han K L, He G Z, Lou N Q 1998 Chem. Phys. Lett. 284 200

    [21]

    Gustafsson M, Skodje R T 2007 Chem. Phys. Lett. 434 20

    [22]

    Yang T G, Yuan J C, Cheng D H, Chen M D 2013 Commun. Comput. Chem. 1 15

    [23]

    Zhao J, Xu Y, Yue D G, Meng Q T 2009 Chem. Phys. Lett. 471 160

    [24]

    Chen M D, Han K L, Lou N Q 2003 J. Chem. Phys. 118 4463

    [25]

    Aoiz F J, Brouard M, Enriquez P A 1996 J. Chem. Phys. 105 4964

    [26]

    Wang M L, Han K L, He G Z 1998 J. Chem. Phys. 109 5446

    [27]

    Aoiz F J, Herrero V J, Sáez R V 1992 J. Chem. Phys. 97 7423

    [28]

    Zhang W Q, Li Y Z, Xu X S, Chen M D 2010 Chem. Phys. 367 115

    [29]

    Zhao J, Xu Y, Meng Q T 2010 Chin. Phys. B 19 063403

    [30]

    Zhang C H, Zhang W Q, Chen M D 2009 J. Theor. Comput. Chem. 8 403

    [31]

    Yue X F, Cheng J, Li H, Zhang Y Q, Wu E L 2010 Chin. Phys. B 19 043401

    [32]

    Li R J, Han K L, Li F E, Lu R C, He G Z, Lou N Q 1994 Chem. Phys. Lett. 220 281

    [33]

    Xia W Z, Yu Y J, Yang C L 2012 Acta Phys. Sin. 61 223401 (in Chinese) [夏文泽, 于永江, 杨传路 2012 物理学报 61 223401]

    [34]

    Wang M L, Han K L, He G Z 1998 J. Phys. Chem. A 102 10204

    [35]

    Xu Y, Zhao J, Wang J, Liu F, Meng Q T 2010 Acta Phys. Sin. 59 3885 (in Chinese) [许燕, 赵娟, 王军, 刘芳, 孟庆田 2010 物理学报 59 3885]

    [36]

    Li W L, Wang M S, Yang C L, Liu W W, Sun C, Ren T Q 2007 Chem. Phys. 337 93

    [37]

    Chen M D, Han K L, Lou N Q 2002 Chem. Phys. Lett. 357 483

  • [1]

    Koshi M, Yoshimura M, Fukuda K, Matsui H, Saito K, Watanabe M, Imamura A, Chen C X 1990 J. Chem. Phys. 93 8703

    [2]

    Davidson D F, Hanson R K 1990 Int. J. Chem. Kinet. 22 843

    [3]

    Pascual R Z, Schatz G C, Lendvay G, Troya D 2002 J. Phys. Chem. A 106 4125

    [4]

    Adam L, Hack W, Zhu H, Qu Z W, Schinke R 2005 J. Chem. Phys. 122 114301

    [5]

    Poveda L A, Varandas A J C 2005 Phys. Chem. Chem. Phys. 7 2867

    [6]

    Han B R, Yang H, Zheng Y J, Varandas A J C 2010 Chem. Phys. Lett. 493 225

    [7]

    Zhai H S, Han K L 2011 J. Chem. Phys. 135 104314

    [8]

    He D, Wang M S, Yang C L, Jiang Z J 2013 Chin. Phys. B 22 068201

    [9]

    Wei Q 2014 Chin. Phys. B 23 023401

    [10]

    Li Z, Xie C J, Jiang B, Xie D Q, Liu L, Sun Z G, Zhang D H, Guo H 2011 J. Chem. Phys. 134 134303

    [11]

    Zhang W Q, Cong S L, Zhang C H, Xu X S, Chen M D 2009 J. Phys. Chem. A 113 4192

    [12]

    Han K L, Zheng X G, Sun B F, He G Z, Zhang R Q 1991 Chem. Phys. Lett. 181 474

    [13]

    Han K L, Zhang L, Xu D L, He G Z, Lou N Q 2001 J. Phys. Chem. A 105 2956

    [14]

    Duan L H, Zhang W Q, Xu X S, Cong S L, Chen M D 2009 Mol. Phys. 107 2579

    [15]

    Xiao J, Yang C L, Wang M S 2012 Chin. Phys. B 21 043101

    [16]

    Brouard M, Burak I, Hughes D W, Kalogerakis K S, Simons J P, Stavros V 2000 J. Chem. Phys. 113 3173

    [17]

    Li X H, Wang M S, Pino I, Yang C L, Ma L Z 2009 Phys. Chem. Chem. Phys. 11 10438

    [18]

    Zhang J, Chu T S, Dong S L, Yuan S P, Fu A P, Duan Y B 2011 Chin. Phys. Lett. 28 093403

    [19]

    Jiang Z J, Wang M S, Yang C L, He D 2013 Chem. Phys. 415 8

    [20]

    Wang M L, Han K L, He G Z, Lou N Q 1998 Chem. Phys. Lett. 284 200

    [21]

    Gustafsson M, Skodje R T 2007 Chem. Phys. Lett. 434 20

    [22]

    Yang T G, Yuan J C, Cheng D H, Chen M D 2013 Commun. Comput. Chem. 1 15

    [23]

    Zhao J, Xu Y, Yue D G, Meng Q T 2009 Chem. Phys. Lett. 471 160

    [24]

    Chen M D, Han K L, Lou N Q 2003 J. Chem. Phys. 118 4463

    [25]

    Aoiz F J, Brouard M, Enriquez P A 1996 J. Chem. Phys. 105 4964

    [26]

    Wang M L, Han K L, He G Z 1998 J. Chem. Phys. 109 5446

    [27]

    Aoiz F J, Herrero V J, Sáez R V 1992 J. Chem. Phys. 97 7423

    [28]

    Zhang W Q, Li Y Z, Xu X S, Chen M D 2010 Chem. Phys. 367 115

    [29]

    Zhao J, Xu Y, Meng Q T 2010 Chin. Phys. B 19 063403

    [30]

    Zhang C H, Zhang W Q, Chen M D 2009 J. Theor. Comput. Chem. 8 403

    [31]

    Yue X F, Cheng J, Li H, Zhang Y Q, Wu E L 2010 Chin. Phys. B 19 043401

    [32]

    Li R J, Han K L, Li F E, Lu R C, He G Z, Lou N Q 1994 Chem. Phys. Lett. 220 281

    [33]

    Xia W Z, Yu Y J, Yang C L 2012 Acta Phys. Sin. 61 223401 (in Chinese) [夏文泽, 于永江, 杨传路 2012 物理学报 61 223401]

    [34]

    Wang M L, Han K L, He G Z 1998 J. Phys. Chem. A 102 10204

    [35]

    Xu Y, Zhao J, Wang J, Liu F, Meng Q T 2010 Acta Phys. Sin. 59 3885 (in Chinese) [许燕, 赵娟, 王军, 刘芳, 孟庆田 2010 物理学报 59 3885]

    [36]

    Li W L, Wang M S, Yang C L, Liu W W, Sun C, Ren T Q 2007 Chem. Phys. 337 93

    [37]

    Chen M D, Han K L, Lou N Q 2002 Chem. Phys. Lett. 357 483

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1713
  • PDF下载量:  328
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-08-27
  • 修回日期:  2014-09-20
  • 刊出日期:  2015-02-05

同位素效应对H+NH→N+H2反应的立体动力学性质的影响

  • 1. 鲁东大学物理与光电工程学院, 烟台 264025
    基金项目: 

    国家自然科学基金(批准号: 11474142, 11074103)资助的课题.

摘要: 基于翟红生和韩克利给出的势能面[Zhai H S, Han K L 2011 J. Chem. Phys. 135 104314], 运用准经典轨线方法对H+NH及其同位素取代反应的立体动力学性质进行了理论研究. 分别计算并讨论了碰撞能Ec=8和16 kcal/mol时反应的极化微分反应截面、两矢量k-j'相关分布函数P(θr)、 三矢量 k- k'- j'相关分布函数P(φr)、空间分布函数P(θr, φr). 结果表明, 对于上述的两个碰撞能, 由于同位素取代反应中质量因子的不同, 同位素效应对H+NH反应的立体动力学性质的影响很明显.

English Abstract

参考文献 (37)

目录

    /

    返回文章
    返回