搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Duffing振子微弱信号检测盲区消除及检测统计量构造

牛德智 陈长兴 班斐 徐浩翔 李永宾 王卓 任晓岳 陈强

Duffing振子微弱信号检测盲区消除及检测统计量构造

牛德智, 陈长兴, 班斐, 徐浩翔, 李永宾, 王卓, 任晓岳, 陈强
PDF
导出引用
导出核心图
  • 针对Duffing振子进行同频微弱信号检测时存在的检测盲区, 提出了一种策动力移相法予以消除. 结合微弱信号特性对检测盲区表达式进行分析, 得出了策动力与待测信号的“相差”位于检测盲区时的角度范围, 通过使策动力相位产生相移量π后实现对同频信号的检测, 实验证明了方法的可行性. 为了克服定性分析的不足和有效区分振子系统信号检测过程中出现的不同状态, 构造了一个基于类Halmiton系统的检测统计量, 并设计了基于该统计量的任意频率信号检测方法步骤, 方法的核心是以检测统计量出现极大值处所在的连续两个频点作为待测信号的频率范围. 在不同检测过程的仿真实验基础上, 给出了混沌、间歇混沌和大周期的检测统计量数值范围, 进而利用该数值范围作为判据实现了对任意频率信号的检测. 实验结果表明, 该方法不仅为系统状态提供了定量的判据准则, 而且提高了信号检测性能, 进一步完善了现有利用Duffing振子进行微弱信号检测的方法.
    • 基金项目: 陕西省自然科学基础研究计划项目(批准号: 2014JM8344)资助的课题.
    [1]

    Xu Y C, Yang C L 2010 J. Harbin Institute Technol. 42 446

    [2]

    Chen M J, Ling H L, Liu Y H, Qu S X, Ren W 2014 Chin. Phys. B 23 028701

    [3]

    Birx D I 1992 IEEE Int. Joint Conf. Neural Networks 22 881

    [4]

    Zhang X Y, Guo H X, Wang B H 2007 Chin. Sci. Bull. 52 1906

    [5]

    Shi S H, Yuan Y, Wang H Q, Luo M K 2011 Chin. Phys. Lett. 28 040502

    [6]

    Wang Y C, Zhao Q C, Wang A B 2008 Chin. Phys. B 17 2373

    [7]

    Wen Z, Li L P 2007 Acta Automat. Sin. 33 536 (in Chinese) [文忠, 李立萍 2007 自动化学报 33 536]

    [8]

    Liu H B, Wu D W, Dai C J, Mao H 2013 Acta Electron. Sin. 41 8 (in Chinese) [刘海波, 吴德伟, 戴传金, 毛虎 2013 电子学报 41 8]

    [9]

    Cong C, Li X K, Song Y 2014 Acta Phys. Sin. 63 064301 (in Chinese) [丛超, 李秀坤, 宋扬 2014 物理学报 63 064301]

    [10]

    Rui G S, Zhang Y, Miao J, Zhang S, Shi T 2012 Acta Electron. Sin. 40 1269 (in Chinese) [芮国胜, 张洋, 苗俊, 张嵩, 史特 2012 电子学报 40 1269]

    [11]

    Yang M, An J P, Chen N, Wei J C 2011 Trans. Beijing Institute Technol. 31 329 (in Chinese) [杨淼, 安建平, 陈宁, 卫景宠 2011 北京理工大学学报 31 329]

    [12]

    Jimenez-Triana A, Tang K S W, Chen G R 2010 IEEE Trans. Circ. Syst.-II: EXPRESS BRIEFS 57 305

    [13]

    Wang Y S, Jiang W Z, Zhao J J, Fan H D 2008 Acta Phys. Sin. 57 2053 (in Chinese) [王永生, 姜文志, 赵建军, 范洪达 2008 物理学报 57 2053]

    [14]

    Jiang W L, Wu S Q, Zhang J C 2002 J. Yanshan Univ. 26 114 (in Chinese) [姜万录, 吴胜强, 张建成 2002 燕山大学学报 26 114]

    [15]

    15Xu Y C 2010 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese) [徐艳春 2010 博士学位论文 (哈尔滨:哈尔滨工业大学)]

    [16]

    Wang G Y, Chen D J, Lin J Y, Chen X 1999 IEEE Trans. Industr. Electron. 46 440

    [17]

    Vahedi H, Gharehpetian G B, Karrari M 2012 IEEE Trans. Power Delivery 27 1973

    [18]

    Fan J, Zhao W L, Zhang M L, Tan R H, Wang W Q 2014 Acta Phys. Sin. 63 110506 (in Chinese) [范剑, 赵文礼, 张明路, 檀润华, 王万强 2014 物理学报 63 110506]

    [19]

    Wei H D, Gan L, Li L P 2012 J. Univ. Electron. Sci. Technol. China 41 203 (in Chinese) [魏恒东, 甘露, 李立萍 2012 电子科技大学学报 41 203]

    [20]

    Jin T, Zhang H 2011 Sci. China: Inform. Sci. 41 1184 (in Chinese) [金天, 张骅 2011 中国科学: 信息科学 41 1184]

    [21]

    Yuan R S, Ma Y A, Yuan B, Ao P 2014 Chin. Phys. B 23 010505

    [22]

    Lu P, Li Y 2005 Acta Electron. Sin. 33 527 (in Chinese) [路鹏, 李月 2005 电子学报 33 527]

  • [1]

    Xu Y C, Yang C L 2010 J. Harbin Institute Technol. 42 446

    [2]

    Chen M J, Ling H L, Liu Y H, Qu S X, Ren W 2014 Chin. Phys. B 23 028701

    [3]

    Birx D I 1992 IEEE Int. Joint Conf. Neural Networks 22 881

    [4]

    Zhang X Y, Guo H X, Wang B H 2007 Chin. Sci. Bull. 52 1906

    [5]

    Shi S H, Yuan Y, Wang H Q, Luo M K 2011 Chin. Phys. Lett. 28 040502

    [6]

    Wang Y C, Zhao Q C, Wang A B 2008 Chin. Phys. B 17 2373

    [7]

    Wen Z, Li L P 2007 Acta Automat. Sin. 33 536 (in Chinese) [文忠, 李立萍 2007 自动化学报 33 536]

    [8]

    Liu H B, Wu D W, Dai C J, Mao H 2013 Acta Electron. Sin. 41 8 (in Chinese) [刘海波, 吴德伟, 戴传金, 毛虎 2013 电子学报 41 8]

    [9]

    Cong C, Li X K, Song Y 2014 Acta Phys. Sin. 63 064301 (in Chinese) [丛超, 李秀坤, 宋扬 2014 物理学报 63 064301]

    [10]

    Rui G S, Zhang Y, Miao J, Zhang S, Shi T 2012 Acta Electron. Sin. 40 1269 (in Chinese) [芮国胜, 张洋, 苗俊, 张嵩, 史特 2012 电子学报 40 1269]

    [11]

    Yang M, An J P, Chen N, Wei J C 2011 Trans. Beijing Institute Technol. 31 329 (in Chinese) [杨淼, 安建平, 陈宁, 卫景宠 2011 北京理工大学学报 31 329]

    [12]

    Jimenez-Triana A, Tang K S W, Chen G R 2010 IEEE Trans. Circ. Syst.-II: EXPRESS BRIEFS 57 305

    [13]

    Wang Y S, Jiang W Z, Zhao J J, Fan H D 2008 Acta Phys. Sin. 57 2053 (in Chinese) [王永生, 姜文志, 赵建军, 范洪达 2008 物理学报 57 2053]

    [14]

    Jiang W L, Wu S Q, Zhang J C 2002 J. Yanshan Univ. 26 114 (in Chinese) [姜万录, 吴胜强, 张建成 2002 燕山大学学报 26 114]

    [15]

    15Xu Y C 2010 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese) [徐艳春 2010 博士学位论文 (哈尔滨:哈尔滨工业大学)]

    [16]

    Wang G Y, Chen D J, Lin J Y, Chen X 1999 IEEE Trans. Industr. Electron. 46 440

    [17]

    Vahedi H, Gharehpetian G B, Karrari M 2012 IEEE Trans. Power Delivery 27 1973

    [18]

    Fan J, Zhao W L, Zhang M L, Tan R H, Wang W Q 2014 Acta Phys. Sin. 63 110506 (in Chinese) [范剑, 赵文礼, 张明路, 檀润华, 王万强 2014 物理学报 63 110506]

    [19]

    Wei H D, Gan L, Li L P 2012 J. Univ. Electron. Sci. Technol. China 41 203 (in Chinese) [魏恒东, 甘露, 李立萍 2012 电子科技大学学报 41 203]

    [20]

    Jin T, Zhang H 2011 Sci. China: Inform. Sci. 41 1184 (in Chinese) [金天, 张骅 2011 中国科学: 信息科学 41 1184]

    [21]

    Yuan R S, Ma Y A, Yuan B, Ao P 2014 Chin. Phys. B 23 010505

    [22]

    Lu P, Li Y 2005 Acta Electron. Sin. 33 527 (in Chinese) [路鹏, 李月 2005 电子学报 33 527]

  • [1] 赖志慧, 冷永刚, 孙建桥, 范胜波. 基于Duffing振子的变尺度微弱特征信号检测方法研究. 物理学报, 2012, 61(5): 050503. doi: 10.7498/aps.61.050503
    [2] 冷永刚, 赖志慧, 范胜波, 高毓璣. 二维Duffing振子的大参数随机共振及微弱信号检测研究. 物理学报, 2012, 61(23): 230502. doi: 10.7498/aps.61.230502
    [3] 贺静波, 刘忠, 胡生亮. 基于海杂波散射特性的微弱信号检测方法. 物理学报, 2011, 60(11): 110208. doi: 10.7498/aps.60.110208
    [4] 许雪梅, 戴鹏, 杨兵初, 尹林子, 曹建, 丁一鹏, 曹粲. 光声池中微弱光声信号检测. 物理学报, 2013, 62(20): 204303. doi: 10.7498/aps.62.204303
    [5] 陈志光, 李亚安, 陈晓. 基于Hilbert变换及间歇混沌的水声微弱信号检测方法研究. 物理学报, 2015, 64(20): 200502. doi: 10.7498/aps.64.200502
    [6] 周薛雪, 赖莉, 罗懋康. 基于分数阶可停振动系统的周期未知微弱信号检测方法 . 物理学报, 2013, 62(9): 090501. doi: 10.7498/aps.62.090501
    [7] 张路, 谢天婷, 罗懋康. 双频信号驱动含分数阶内、外阻尼Duffing振子的振动共振. 物理学报, 2014, 63(1): 010506. doi: 10.7498/aps.63.010506
    [8] 吴勇峰, 张世平, 孙金玮, Peter Rolfe. 环形耦合Duffing振子间的同步突变. 物理学报, 2011, 60(2): 020511. doi: 10.7498/aps.60.020511
    [9] 戎海武, 王向东, 徐 伟, 方 同. 有界随机噪声激励下软弹簧Duffing振子的安全盆分叉. 物理学报, 2005, 54(10): 4610-4613. doi: 10.7498/aps.54.4610
    [10] 王向东, 戎海武, 孟 光, 徐 伟, 方 同. 窄带随机噪声作用下Duffing振子的双峰稳态概率密度. 物理学报, 2005, 54(6): 2557-2561. doi: 10.7498/aps.54.2557
    [11] 戎海武, 王向东, 徐 伟, 方 同. 谐和与噪声联合作用下Duffing振子的安全盆分叉与混沌. 物理学报, 2007, 56(4): 2005-2011. doi: 10.7498/aps.56.2005
    [12] 吴勇峰, 张世平, 孙金玮, Peter Rolfe, 李智. 脉冲激励下环形耦合Duffing振子间的瞬态同步突变现象. 物理学报, 2011, 60(10): 100509. doi: 10.7498/aps.60.100509
    [13] 冷永刚, 赖志慧. 基于Kramers逃逸速率的Duffing振子广义调参随机共振研究. 物理学报, 2014, 63(2): 020502. doi: 10.7498/aps.63.020502
    [14] 温少芳, 申永军, 杨绍普. 分数阶时滞反馈对Duffing振子动力学特性的影响. 物理学报, 2016, 65(9): 094502. doi: 10.7498/aps.65.094502
    [15] 刘海波, 吴德伟, 金伟, 王永庆. Duffing振子微弱信号检测方法研究. 物理学报, 2013, 62(5): 050501. doi: 10.7498/aps.62.050501
    [16] 曹保锋, 李鹏, 李小强, 张雪芹, 宁王师, 梁睿, 李欣, 胡淼, 郑毅. 基于强耦合Duffing振子的微弱脉冲信号检测与参数估计. 物理学报, 2019, 68(8): 080501. doi: 10.7498/aps.68.20181856
    [17] 范剑, 赵文礼, 王万强. 基于Duffing振子的微弱周期信号混沌检测性能研究. 物理学报, 2013, 62(18): 180502. doi: 10.7498/aps.62.180502
    [18] 包 刚, 那仁满都拉, 图布心, 额尔顿仓. 耦合混沌振子系统完全同步的动力学行为. 物理学报, 2007, 56(4): 1971-1974. doi: 10.7498/aps.56.1971
    [19] 田祥友, 冷永刚, 范胜波. 一阶线性系统的调参随机共振研究. 物理学报, 2013, 62(2): 020505. doi: 10.7498/aps.62.020505
    [20] 张宣妮, 张淳民, 艾晶晶. 四分束风成像偏振干涉仪信噪比的研究. 物理学报, 2013, 62(3): 030701. doi: 10.7498/aps.62.030701
  • 引用本文:
    Citation:
计量
  • 文章访问数:  545
  • PDF下载量:  240
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-26
  • 修回日期:  2014-11-19
  • 刊出日期:  2015-03-20

Duffing振子微弱信号检测盲区消除及检测统计量构造

  • 1. 空军工程大学理学院, 西安 710051;
  • 2. 西安通信学院, 西安 710106;
  • 3. 空军工程大学科研部, 西安 710051;
  • 4. 空军工程大学装备管理与安全工程学院, 西安 710051
    基金项目: 

    陕西省自然科学基础研究计划项目(批准号: 2014JM8344)资助的课题.

摘要: 针对Duffing振子进行同频微弱信号检测时存在的检测盲区, 提出了一种策动力移相法予以消除. 结合微弱信号特性对检测盲区表达式进行分析, 得出了策动力与待测信号的“相差”位于检测盲区时的角度范围, 通过使策动力相位产生相移量π后实现对同频信号的检测, 实验证明了方法的可行性. 为了克服定性分析的不足和有效区分振子系统信号检测过程中出现的不同状态, 构造了一个基于类Halmiton系统的检测统计量, 并设计了基于该统计量的任意频率信号检测方法步骤, 方法的核心是以检测统计量出现极大值处所在的连续两个频点作为待测信号的频率范围. 在不同检测过程的仿真实验基础上, 给出了混沌、间歇混沌和大周期的检测统计量数值范围, 进而利用该数值范围作为判据实现了对任意频率信号的检测. 实验结果表明, 该方法不仅为系统状态提供了定量的判据准则, 而且提高了信号检测性能, 进一步完善了现有利用Duffing振子进行微弱信号检测的方法.

English Abstract

参考文献 (22)

目录

    /

    返回文章
    返回