搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯基双曲色散特异材料的负折射与体等离子体性质

龚健 张利伟 陈亮 乔文涛 汪舰

石墨烯基双曲色散特异材料的负折射与体等离子体性质

龚健, 张利伟, 陈亮, 乔文涛, 汪舰
PDF
导出引用
  • 基于有效介质理论研究了石墨烯/介质周期结构的电磁性质, 研究发现这种复合结构的等频面在太赫兹和远红外波段为双曲线, 可用来实现石墨烯基双曲色散特异材料. 通过改变石墨烯的费米能级、介质层厚度和单元结构中石墨烯的层数, 可很容易地调节双曲色散存在的频段. 由于等频面的双曲色散特性, 石墨烯基双曲色散特异材料在远低于截止频率的范围内, 对斜入射的电磁波具有负的能量折射率和正的相位折射率, 并支持局域体等离子体模式. 基于衰减全反射结构, 研究了体等离子体的激发, 探索了体等离子体在可调的光学反射调制器中的应用.
    • 基金项目: 国家自然科学基金(批准号: 10904032, 11204068, 11405045)、河南省教育厅自然科学基金(批准号: 14A140011, 2012GGJS-060)、河南理工大学杰出青年基金(批准号: J2013-09)、河南理工大学创新型科研团队支持计划(批准号:T2015-3)和河南理工大学博士基金(批准号: B2009-92, B2009-61)资助的课题.
    [1]

    Smith D R, Schultz S 2003 Phys. Rev. Lett. 90 077405

    [2]

    Drachev V P, Podolskiy V A, Kildishev A V 2013 Opt. Express 21 15048

    [3]

    Argyropoulos C, Estakhri N M, Monticone F, Alú A 2013 Opt. Express 21 15037

    [4]

    Sreekanth K V, Luca A De, Strangi G 2013 Appl. Phys. Lett. 103 023107

    [5]

    Wood B, Pendry J B, Tsai D P 2006 Phys. Rev. B 74 115116

    [6]

    Kotynski R, Stefaniuk T 2010 Opt. Lett. 35 1133

    [7]

    Xiang Y J, Dai X Y, We S C, Fan D Y 2007 J. Appl. Phys. 102 093107

    [8]

    Zhukovsky S V, Kidwai O, Sipe J E 2013 Opt. Express 21 14982

    [9]

    Noginov M A, Barnakov A, Zhu G, Tumkur T, Li H Narimanov E E 2009 Appl. Phys. Lett. 94 151105

    [10]

    Vinogradov A P, Dorofeenko A V, Nechepurenko I A 2010 Metamaterials 4 181

    [11]

    Dong H M 2013 Acta Phys. Sin. 62 237804 (in Chinese) [董海明 2013 物理学报 62 237804]

    [12]

    Novoselov K S, Falko V I, Colombo L, Gellert P R, Schwab M G, Kim K 2012 Nature 490 192

    [13]

    Grigorenko A N, Polini M, Novoselov K S 2012 Nature Photon. 6 749

    [14]

    Guo B D, Fang L, Zhang B H, Gong J R 2011 Insciences J. 1 80

    [15]

    Fei Z, Rodin A S, Andreev G O, Bao W, McLeod A S, Wagner M, Zhang L M, Zhao Z, Thiemens M, Dominguez G, Fogler M M, Neto A H C, Lau C N, Keilmann F, Basov D N 2012 Nature 487 82

    [16]

    Xie L Y, Xiao W B, Huang G Q, Hu A R, Liu J T 2014 Acta Phys. Sin. 63 057803 (in Chinese) [谢凌云, 肖文波, 黄国庆, 胡爱荣, 刘江涛 2014 物理学报 63 057803]

    [17]

    Othman M A K, Guclu C, Capolino F 2013 J. Nanophoton. 7 073089

    [18]

    Wu H Q, Linghu C Y, L H M, Qian H 2013 Chin. Phys. B 22 098106

    [19]

    Zhang L, Fu X L, Lei M, Chen J J, Yang J Z, Peng Z J, Tang W H 2014 Chin. Phys. B 23 038101

    [20]

    Iorsh I V, Mukhin I S, Shadrivov I V, Belov P A, Kivshar Y S 2013 Phys. Rev. B 87 075416

    [21]

    Zhang T, Chen L, Li X 2013 Opt. Express 21 20888

    [22]

    Zhu B F, Ren G B, Zheng S W, Lin Z, Jian S S 2013 Opt. Express 21 17089

    [23]

    Xiang Y J, Guo J, Dai X Y, Wen S C, Tang D Y 2014 Opt. Express 22 3054

    [24]

    Tao H, Bingham C M, Strikwerda A C, Pilon D, Shrekenhamer D, Landy N I, Fan K, Zhang X, Padilla W J, Averitt R D 2008 Phys. Rev. B 78 241103(R)

    [25]

    Kidwai O, Zhukovsky S V, Sipe J E 2012 Phys. Rev. A 85 053842

    [26]

    Hu L B, Chui S T 2002 Phys. Rev. B 66 085108

    [27]

    Grzegorczyk T M, Nikku M, Chen X D, Wu B I, Kong J A 2005 IEEE Trans. Microw. Theory Tech. 53 1443

    [28]

    Avrutsky I, Salakhutdinov I, Elser J, Podolskiy V 2007 Phys. Rev. B 75 241402

    [29]

    Xu H J, Lu W B, Zhu W, Dong Z G, Cui T J 2012 Appl. Phys. Lett. 100 243110

    [30]

    Chen C F, Park C H, Boudouris B W, Horng J, Geng B, Girit C, Zettl A, Crommie M F, Segalman R A, Louie S G, Wang F 2011 Nature 471 617

    [31]

    Shi X L, Zheng S L, Chi H, Jin X F, Zhang X M 2013 Opt. Laser Technol. 49 316

    [32]

    Li J S 2013 Opt. Commun. 296 137

  • [1]

    Smith D R, Schultz S 2003 Phys. Rev. Lett. 90 077405

    [2]

    Drachev V P, Podolskiy V A, Kildishev A V 2013 Opt. Express 21 15048

    [3]

    Argyropoulos C, Estakhri N M, Monticone F, Alú A 2013 Opt. Express 21 15037

    [4]

    Sreekanth K V, Luca A De, Strangi G 2013 Appl. Phys. Lett. 103 023107

    [5]

    Wood B, Pendry J B, Tsai D P 2006 Phys. Rev. B 74 115116

    [6]

    Kotynski R, Stefaniuk T 2010 Opt. Lett. 35 1133

    [7]

    Xiang Y J, Dai X Y, We S C, Fan D Y 2007 J. Appl. Phys. 102 093107

    [8]

    Zhukovsky S V, Kidwai O, Sipe J E 2013 Opt. Express 21 14982

    [9]

    Noginov M A, Barnakov A, Zhu G, Tumkur T, Li H Narimanov E E 2009 Appl. Phys. Lett. 94 151105

    [10]

    Vinogradov A P, Dorofeenko A V, Nechepurenko I A 2010 Metamaterials 4 181

    [11]

    Dong H M 2013 Acta Phys. Sin. 62 237804 (in Chinese) [董海明 2013 物理学报 62 237804]

    [12]

    Novoselov K S, Falko V I, Colombo L, Gellert P R, Schwab M G, Kim K 2012 Nature 490 192

    [13]

    Grigorenko A N, Polini M, Novoselov K S 2012 Nature Photon. 6 749

    [14]

    Guo B D, Fang L, Zhang B H, Gong J R 2011 Insciences J. 1 80

    [15]

    Fei Z, Rodin A S, Andreev G O, Bao W, McLeod A S, Wagner M, Zhang L M, Zhao Z, Thiemens M, Dominguez G, Fogler M M, Neto A H C, Lau C N, Keilmann F, Basov D N 2012 Nature 487 82

    [16]

    Xie L Y, Xiao W B, Huang G Q, Hu A R, Liu J T 2014 Acta Phys. Sin. 63 057803 (in Chinese) [谢凌云, 肖文波, 黄国庆, 胡爱荣, 刘江涛 2014 物理学报 63 057803]

    [17]

    Othman M A K, Guclu C, Capolino F 2013 J. Nanophoton. 7 073089

    [18]

    Wu H Q, Linghu C Y, L H M, Qian H 2013 Chin. Phys. B 22 098106

    [19]

    Zhang L, Fu X L, Lei M, Chen J J, Yang J Z, Peng Z J, Tang W H 2014 Chin. Phys. B 23 038101

    [20]

    Iorsh I V, Mukhin I S, Shadrivov I V, Belov P A, Kivshar Y S 2013 Phys. Rev. B 87 075416

    [21]

    Zhang T, Chen L, Li X 2013 Opt. Express 21 20888

    [22]

    Zhu B F, Ren G B, Zheng S W, Lin Z, Jian S S 2013 Opt. Express 21 17089

    [23]

    Xiang Y J, Guo J, Dai X Y, Wen S C, Tang D Y 2014 Opt. Express 22 3054

    [24]

    Tao H, Bingham C M, Strikwerda A C, Pilon D, Shrekenhamer D, Landy N I, Fan K, Zhang X, Padilla W J, Averitt R D 2008 Phys. Rev. B 78 241103(R)

    [25]

    Kidwai O, Zhukovsky S V, Sipe J E 2012 Phys. Rev. A 85 053842

    [26]

    Hu L B, Chui S T 2002 Phys. Rev. B 66 085108

    [27]

    Grzegorczyk T M, Nikku M, Chen X D, Wu B I, Kong J A 2005 IEEE Trans. Microw. Theory Tech. 53 1443

    [28]

    Avrutsky I, Salakhutdinov I, Elser J, Podolskiy V 2007 Phys. Rev. B 75 241402

    [29]

    Xu H J, Lu W B, Zhu W, Dong Z G, Cui T J 2012 Appl. Phys. Lett. 100 243110

    [30]

    Chen C F, Park C H, Boudouris B W, Horng J, Geng B, Girit C, Zettl A, Crommie M F, Segalman R A, Louie S G, Wang F 2011 Nature 471 617

    [31]

    Shi X L, Zheng S L, Chi H, Jin X F, Zhang X M 2013 Opt. Laser Technol. 49 316

    [32]

    Li J S 2013 Opt. Commun. 296 137

  • 引用本文:
    Citation:
计量
  • 文章访问数:  2390
  • PDF下载量:  725
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-25
  • 修回日期:  2014-10-16
  • 刊出日期:  2015-03-05

石墨烯基双曲色散特异材料的负折射与体等离子体性质

  • 1. 河南理工大学物理化学学院, 焦作 454000;
  • 2. 河南理工大学土木工程学院, 焦作 454000
    基金项目: 

    国家自然科学基金(批准号: 10904032, 11204068, 11405045)、河南省教育厅自然科学基金(批准号: 14A140011, 2012GGJS-060)、河南理工大学杰出青年基金(批准号: J2013-09)、河南理工大学创新型科研团队支持计划(批准号:T2015-3)和河南理工大学博士基金(批准号: B2009-92, B2009-61)资助的课题.

摘要: 基于有效介质理论研究了石墨烯/介质周期结构的电磁性质, 研究发现这种复合结构的等频面在太赫兹和远红外波段为双曲线, 可用来实现石墨烯基双曲色散特异材料. 通过改变石墨烯的费米能级、介质层厚度和单元结构中石墨烯的层数, 可很容易地调节双曲色散存在的频段. 由于等频面的双曲色散特性, 石墨烯基双曲色散特异材料在远低于截止频率的范围内, 对斜入射的电磁波具有负的能量折射率和正的相位折射率, 并支持局域体等离子体模式. 基于衰减全反射结构, 研究了体等离子体的激发, 探索了体等离子体在可调的光学反射调制器中的应用.

English Abstract

参考文献 (32)

目录

    /

    返回文章
    返回