-
本文以SnCl4·5H2O和氧化石墨烯为先驱物, 乙醇水溶液为溶剂, 采用一种简单的水热法一步合成了具有可见光催化活性的SnO2量子点(约3–5 nm)与石墨烯复合结构, 利用透射电子显微镜(TEM), 高分辨透射电子显微镜(HRTEM), X射线衍射仪(XRD), 傅里叶变换红外光谱(FT-IR)等技术对其结构进行了表征, 利用紫外可见吸收光谱(UV-vis)分析了其光学性能, 罗丹明-B染料为目标降解物研究了SnO2量子点/石墨烯复合结构可见光催化性能. 结果表明: 与纯SnO2、纯石墨烯相比, 复合结构显示出了很高的可见光催化活性. 通过对其结构进行分析, 我们提出了SnO2量子点/石墨烯复合结构的形成机制及其可见光催化活性机理.
[1] Fujishima A, Honda K 1972 Nature 238 37
[2] Zhang J, Yu J G, Jaroniec M, Gong J R 2012 Nano Lett 12 4584
[3] Zhuang S D, Xu X Y, Feng B, Hu J G, Pang Y R, Zhou G, Tong L, Zhou Y X 2014 ACS Appl. Mater. Interfaces 6 613
[4] Zhang Y C, Zhang M, Du Zhen Ni, Li K W, Dionysiou D D 2013 Appl. Catal. B 142-143 249
[5] Gubbala S, Chakrapani V, Kumar V, Sunkara M K 2008 Adv. Funct. Mater 18 2411
[6] Song F, H Su, Han J, Lau W M, Moon W J, Zhang D 2012 J.Phys.chem.C 116 10274
[7] Miyauchi M, Nakajima A, Watanabe T, Hashimoto K 2002 Chem.Mater. 14 2812
[8] Wu S, Cao H, Yin S, Liu X, Zhang X 2009 J.Phys.chen.C 113 17893
[9] Brovelli S, Chiodini N, Lorenzi R, Lauria A, Romagnoli M, Paleari A 2012 Nat.Common. 3 690
[10] Xie G, Zhang K, Guo B, Liu Q, Fang L, Gong J R 2013 Adv.mater 25 3820
[11] Zhang Y C, Du Zhen Ni, Li K W, Zhang M, Dionysiou D D 2011 ACS Appl. Mater. Interfaces 3 1528
[12] Lu H L, Lu C J, Tian W C, Shen H J 2015 Talanta 131 467
[13] Khamatgalimov A R, Kovalenko V I 2015 Taylor & Francis. 23 148
[14] Jiang Z, Shangguan W F 2015 Catalysis Today 242 372
[15] Wang C Y, Yang X H, Ma Y, Feng Y Y, Xiong J L, Wang W 2014 Acta Phy.Sin. 63 157701 (in Chinese) [王长远, 杨晓红, 马勇, 冯媛媛, 熊金龙, 王维 2014 物理学报 63 157701]
[16] Zhu Y Q, Li Chao, Cao C B 2013 RSC Advances 3 11860
[17] Fan B B, Guo H H, Li W, Jia Y, Zhang R 2013 Acta Phy.Sin. 62 148101 (in Chinese) [范冰冰, 郭焕焕, 李稳, 贾瑜, 张锐 2013 物理学报 62 148101]
[18] Zhang Q, He Y Q, Chen X G, Hu D H, Li L J, Ji L L, Yin T 2010 Chinese Sci Bull 55 620 (in Chinese) [张琼,贺蕴秋,陈小刚,胡栋虎,李林江,季伶俐,尹婷 2010 科学通报 55 620]
[19] Chen C, Ru Q, Hu S J, An B N, Song X 2014 Acta Phy.Sin. 63 198201 (in Chinese) [陈畅,汝强,胡社军,安柏楠,宋雄 2014 物理学报 63 198201]
[20] Zhang Y, Tang Z R, Fu X, Xu Y J 2010 ACS Nano 4 7303
[21] Chen X B, Liu L, Yu P Y, Mao S S 2011 Science 331 746
[22] Wang L, Wang D, Dong Z, Zhang F, Jin J 2013 Nano Lett 13 1711
[23] Li F, Song J, Yang H, Gan S, Zhang Q, Han D, Ivaska A, Niu L 2009 Nanotechnology 23 355705
[24] Zhang Z Y, Zou R J, Song G S, Yu L, Chen Z G, Hu J Q 2011 Mater.Chem. 21 17360
[25] Zhang J T, Xiong Z G, Zhao X S 2011 J.Mater.Chem. 21 3634
[26] Stankovich S, Dikin D A, Dommett G H B, Kohlhaas K M, Zimney E J, Stach E A, Piner R D, Nguyen S T, Ruoff R S 2006 Nature 442 282
[27] Geim A K 2009 Science 324 1530
[28] Huang X, Qi X, Boey F, Zhang H 2012 Chem.Soc.Rev. 41 666
[29] Hummers W S, Offeman R E 1958 J.Am.Chem.Soc. 80 1339
[30] Zhang Z, Xiao F, Guo Y, Wang S, Liu Y 2013 ACS Appl.Mater.Interfaces 5 2227
[31] Xu Y, Sheng K, Li C, Shi G 2010 ACS Nano 4 4324
-
[1] Fujishima A, Honda K 1972 Nature 238 37
[2] Zhang J, Yu J G, Jaroniec M, Gong J R 2012 Nano Lett 12 4584
[3] Zhuang S D, Xu X Y, Feng B, Hu J G, Pang Y R, Zhou G, Tong L, Zhou Y X 2014 ACS Appl. Mater. Interfaces 6 613
[4] Zhang Y C, Zhang M, Du Zhen Ni, Li K W, Dionysiou D D 2013 Appl. Catal. B 142-143 249
[5] Gubbala S, Chakrapani V, Kumar V, Sunkara M K 2008 Adv. Funct. Mater 18 2411
[6] Song F, H Su, Han J, Lau W M, Moon W J, Zhang D 2012 J.Phys.chem.C 116 10274
[7] Miyauchi M, Nakajima A, Watanabe T, Hashimoto K 2002 Chem.Mater. 14 2812
[8] Wu S, Cao H, Yin S, Liu X, Zhang X 2009 J.Phys.chen.C 113 17893
[9] Brovelli S, Chiodini N, Lorenzi R, Lauria A, Romagnoli M, Paleari A 2012 Nat.Common. 3 690
[10] Xie G, Zhang K, Guo B, Liu Q, Fang L, Gong J R 2013 Adv.mater 25 3820
[11] Zhang Y C, Du Zhen Ni, Li K W, Zhang M, Dionysiou D D 2011 ACS Appl. Mater. Interfaces 3 1528
[12] Lu H L, Lu C J, Tian W C, Shen H J 2015 Talanta 131 467
[13] Khamatgalimov A R, Kovalenko V I 2015 Taylor & Francis. 23 148
[14] Jiang Z, Shangguan W F 2015 Catalysis Today 242 372
[15] Wang C Y, Yang X H, Ma Y, Feng Y Y, Xiong J L, Wang W 2014 Acta Phy.Sin. 63 157701 (in Chinese) [王长远, 杨晓红, 马勇, 冯媛媛, 熊金龙, 王维 2014 物理学报 63 157701]
[16] Zhu Y Q, Li Chao, Cao C B 2013 RSC Advances 3 11860
[17] Fan B B, Guo H H, Li W, Jia Y, Zhang R 2013 Acta Phy.Sin. 62 148101 (in Chinese) [范冰冰, 郭焕焕, 李稳, 贾瑜, 张锐 2013 物理学报 62 148101]
[18] Zhang Q, He Y Q, Chen X G, Hu D H, Li L J, Ji L L, Yin T 2010 Chinese Sci Bull 55 620 (in Chinese) [张琼,贺蕴秋,陈小刚,胡栋虎,李林江,季伶俐,尹婷 2010 科学通报 55 620]
[19] Chen C, Ru Q, Hu S J, An B N, Song X 2014 Acta Phy.Sin. 63 198201 (in Chinese) [陈畅,汝强,胡社军,安柏楠,宋雄 2014 物理学报 63 198201]
[20] Zhang Y, Tang Z R, Fu X, Xu Y J 2010 ACS Nano 4 7303
[21] Chen X B, Liu L, Yu P Y, Mao S S 2011 Science 331 746
[22] Wang L, Wang D, Dong Z, Zhang F, Jin J 2013 Nano Lett 13 1711
[23] Li F, Song J, Yang H, Gan S, Zhang Q, Han D, Ivaska A, Niu L 2009 Nanotechnology 23 355705
[24] Zhang Z Y, Zou R J, Song G S, Yu L, Chen Z G, Hu J Q 2011 Mater.Chem. 21 17360
[25] Zhang J T, Xiong Z G, Zhao X S 2011 J.Mater.Chem. 21 3634
[26] Stankovich S, Dikin D A, Dommett G H B, Kohlhaas K M, Zimney E J, Stach E A, Piner R D, Nguyen S T, Ruoff R S 2006 Nature 442 282
[27] Geim A K 2009 Science 324 1530
[28] Huang X, Qi X, Boey F, Zhang H 2012 Chem.Soc.Rev. 41 666
[29] Hummers W S, Offeman R E 1958 J.Am.Chem.Soc. 80 1339
[30] Zhang Z, Xiao F, Guo Y, Wang S, Liu Y 2013 ACS Appl.Mater.Interfaces 5 2227
[31] Xu Y, Sheng K, Li C, Shi G 2010 ACS Nano 4 4324
引用本文: |
Citation: |
计量
- 文章访问数: 1564
- PDF下载量: 498
- 被引次数: 0