-
在组合二项-负二项分布的基础上, 提出了二项-负二项组合光场态, 这种态能在Fock态历经量子扩散通道的过程中实现. 导出了此光场的二阶相干度公式, g(2)(t) =2-((m2+m)/(m+κt2)), 发现随着时间的推移光场从非经典Fock态变为经典态, 光子数m 经扩散通道后变成了 m+κt, κ是扩散常数, 相应的光子统计从亚泊松分布历经泊松分布再变成混沌光; 初始Fock态的光子数越多, 则扩散所需的时间越长.
-
关键词:
- 二项-负二项组合光场态 /
- 二阶相干度 /
- 亚泊松分布 /
- 泊松分布
According to the combinational binomial-negative-binomial distribution, we propose a binomial-negative-binomial combinational optical field state, which can be generated in the process of a Fock state |m>m| passing through a quantum-mechanical diffusion channel. We derive the second-order coherence degree formula, g(2)(t) =2-((m2+m)/(m+κt2)), which is the diffusion constant. We find that in the process of the Fock state undergoing quantum diffusion and becoming classical, the corresponding photon statistics evolves from sub-Poissonian distribution to Poisson distribution and finally goes to a chaotic state. We also find that the more photons in the initial Fock state, the longer time is needed for quantum decoherence.-
Keywords:
- binomial-negative-binomial combinational optical field state /
- second-order coherence /
- Poisson distribution /
- sub-Poissonian distribution







下载: