搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同光照条件下水下成像背景光的建模与研究

赵欣慰 金韬 池灏 曲嵩

引用本文:
Citation:

不同光照条件下水下成像背景光的建模与研究

赵欣慰, 金韬, 池灏, 曲嵩

Modeling and simulation of the background light in underwater imaging under different illumination conditions

Zhao Xin-Wei, Jin Tao, Chi Hao, Qu Song
PDF
导出引用
  • 由于光在水中传输时的衰减和散射效应, 水下成像系统通常很难达到令人满意的成像效果, 而成像过程中由于光散射产生的背景光则是造成水下图像退化的主要原因. 本文对自然光照和人工光照两种不同光照条件下的水下成像背景光进行了建模和仿真分析. 结果显示: 自然光照下的无穷远处背景光与衰减系数成反比, 与散射系数成正比; 人工光照下的无穷远处背景光则与衰减系数、散射系数和相机-光源距离有关. 两种光照条件下的背景光都可以用无穷远处背景光的指数衰减表达式来表示. 水下图像背景光的强度主要与水体光学参数、相机-景物的距离、相机-光源的距离及相机成像角等因素有关. 本文的研究结论不仅可用于水下成像系统的设计与优化, 也可用来从水下图像背景光中估计水体光学参数、相机-景物距离等图像信息.
    The underwater visibility is very important in underwater vision research and target detection. However, most underwater vision systems cannot guarantee to possess the performance under complex water conditions. This is because underwater images are usually degraded by light-water interactions of absorption and scattering. The ambient light is scattered into the cameras line of sight by water molecules and suspended particles in the water medium, which adds a layer of haze to the image and reduces the contrast of the image. This part of scattered light is usually called background light, which is the main reason for underwater image degradation. In this paper, the formations of background light in underwater imaging under two different lighting conditions: natural illumination and artificial lighting, are analyzed by setting up physical models. The models developed include the parameters such as camera parameters, light source parameters, inherent optical properties, and camera-source-object geometry. Based on the models, the relationship between the background light and the above parameters is studied. Computer analysis shows that the global background light under two illumination conditions has a close relationship between the inherent optical properties of water medium and camera parameters. The global background light under natural illumination is proportional to the scattering coefficient and inversely proportional to the attenuation coefficient. The background light under the two illumination conditions both can be described in simple exponential falloff expressions of the global background light. The simple expression greatly reduces the computational complexity of simulations. The intensity of background light mainly depends on the inherent optical properties, camera-scene distance, camera-source distance and cameras imaging angle. The relationship between the global background light and the inherent optical properties can be used to estimate the attenuation coefficient, scattering coefficient and scene depth information. The result of this paper can be very useful for designing and improving the underwater imaging systems.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2012CB315703)和国家自然科学基金(批准号: 61275027, 61177003)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2012CB315703) and the National Natural Science Foundation of China (Grant Nos. 61275027, 61177003).
    [1]

    Schettini R, Corchs S 2009 IEEE Trans. Pattern Anal. 31 385

    [2]

    Treibitz T, Schechner Y Y 2009 IEEE Trans. Pattern Anal. 31 385

    [3]

    Cao N W, Liu W Q, Zhang Y J 2000 Acta Phys. Sin. 49 61 (in Chinese) [曹念文, 刘文清, 张玉钧2000 物理学报49 61]

    [4]

    Chiang J Y, Chen Y C 2012 IEEE Trans. Image Process. 21 1756

    [5]

    Yu Y, Liu F 2007 Opt. Eng. 46 116002

    [6]

    Sun Z G, Han C Z 2010 Acta Phys. Sin. 59 998 (in Chinese) [孙增国, 韩崇昭2010 物理学报59 998]

    [7]

    Chen S J, Hu Y H, Sun D J, Xu S L 2013 Acta Phys. Sin. 62 204201 (in Chinese) [陈善静, 胡以华, 孙杜娟, 徐世龙2013 物理学报62 204201]

    [8]

    Oakley J P, Satherley B L 1998 IEEE Trans. Image Process. 7 167

    [9]

    Narasimhan S G, Nayar S K 2002 Int. J. Comput. Vision 48 233

    [10]

    Sun B, Hong J, Sun X B 2014 Chin. Phys. B 23 094201

    [11]

    McGlamery B L 1980 Proceedings of Ocean Optics VI. International Society for Optics and Photonics Monterey, USA, October 23, 1979 p221

    [12]

    Jules S J 1990 IEEE J. Oceanic Eng. 15 101

    [13]

    Palowitch A W, Jules S J 1991 Int. Soc. Opt. Photon. 128

    [14]

    Gordon H R 1989 Limnol. Oceanogr. 34 1389

    [15]

    Spinrad R W, Carder K L, Perry M J 1994 Ocean Optics(Oxford: Oxford University Press) pp 5658

    [16]

    Morel A 1974 in Jerlov N G, Steeman Nielsen ed. Optical Aspects of Oceanography (New York: Academic) pp124

    [17]

    Gould Jr R W, Arnone R A, Martinolich P M 1999 Appl. Opt. 38 2377

    [18]

    Mobley C D 1994 Light and Water: Radiative Transfer in Natural Waters (San-Diego: Academic Press) pp 212213

    [19]

    Lewis M R, Wei J, Dommelen R V, Voss K J 2011 J. Geophys. Res. : Oceans 116 C7

    [20]

    Narasimhan S G, Nayar S K 2002 Int. J. Comput. Vision 48 233

    [21]

    Schechner Y Y, Karpel N 2004 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Washington, DC, USA June 27July 2, 2004 p I-536

    [22]

    Henyey L G, Greenstein J L 1941 Astrophys. J. 93 70

    [23]

    Kattawar G W 1975 J. Quant. Spectrosc. Ra. 15 839

    [24]

    Haltrin V I 2002 Appl. Opt. 41 1022

    [25]

    Fournier G R, Forand J L 1994 Proceedings of Ocean Optics XII. International Society for Optics and Photonics Bergen, Norway, June 13, 1994 p194

    [26]

    Fournier G R, Jonasz M 1999 Proceedings of SPIEs International Symposium on Optical Science, Engineering, and Instrumentation Denver, CO, USA, July 18,1999 p62

    [27]

    Jerlov N G 1968 Optical Oceanography (Amsterdam: Elsevier) pp153155

    [28]

    Tan K K, Oakley J P 2001 J. Opt. Soc. Am. A 18 2460

    [29]

    Susstrunk S E, Holm J M, Finlayson G D 2001 Proceedings of SPIE 4300, Color Imaging: Device-Independent Color, Color Hardcopy, and Graphic Arts VI San Jose, CA, USA, December 21, 2000 p172

  • [1]

    Schettini R, Corchs S 2009 IEEE Trans. Pattern Anal. 31 385

    [2]

    Treibitz T, Schechner Y Y 2009 IEEE Trans. Pattern Anal. 31 385

    [3]

    Cao N W, Liu W Q, Zhang Y J 2000 Acta Phys. Sin. 49 61 (in Chinese) [曹念文, 刘文清, 张玉钧2000 物理学报49 61]

    [4]

    Chiang J Y, Chen Y C 2012 IEEE Trans. Image Process. 21 1756

    [5]

    Yu Y, Liu F 2007 Opt. Eng. 46 116002

    [6]

    Sun Z G, Han C Z 2010 Acta Phys. Sin. 59 998 (in Chinese) [孙增国, 韩崇昭2010 物理学报59 998]

    [7]

    Chen S J, Hu Y H, Sun D J, Xu S L 2013 Acta Phys. Sin. 62 204201 (in Chinese) [陈善静, 胡以华, 孙杜娟, 徐世龙2013 物理学报62 204201]

    [8]

    Oakley J P, Satherley B L 1998 IEEE Trans. Image Process. 7 167

    [9]

    Narasimhan S G, Nayar S K 2002 Int. J. Comput. Vision 48 233

    [10]

    Sun B, Hong J, Sun X B 2014 Chin. Phys. B 23 094201

    [11]

    McGlamery B L 1980 Proceedings of Ocean Optics VI. International Society for Optics and Photonics Monterey, USA, October 23, 1979 p221

    [12]

    Jules S J 1990 IEEE J. Oceanic Eng. 15 101

    [13]

    Palowitch A W, Jules S J 1991 Int. Soc. Opt. Photon. 128

    [14]

    Gordon H R 1989 Limnol. Oceanogr. 34 1389

    [15]

    Spinrad R W, Carder K L, Perry M J 1994 Ocean Optics(Oxford: Oxford University Press) pp 5658

    [16]

    Morel A 1974 in Jerlov N G, Steeman Nielsen ed. Optical Aspects of Oceanography (New York: Academic) pp124

    [17]

    Gould Jr R W, Arnone R A, Martinolich P M 1999 Appl. Opt. 38 2377

    [18]

    Mobley C D 1994 Light and Water: Radiative Transfer in Natural Waters (San-Diego: Academic Press) pp 212213

    [19]

    Lewis M R, Wei J, Dommelen R V, Voss K J 2011 J. Geophys. Res. : Oceans 116 C7

    [20]

    Narasimhan S G, Nayar S K 2002 Int. J. Comput. Vision 48 233

    [21]

    Schechner Y Y, Karpel N 2004 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Washington, DC, USA June 27July 2, 2004 p I-536

    [22]

    Henyey L G, Greenstein J L 1941 Astrophys. J. 93 70

    [23]

    Kattawar G W 1975 J. Quant. Spectrosc. Ra. 15 839

    [24]

    Haltrin V I 2002 Appl. Opt. 41 1022

    [25]

    Fournier G R, Forand J L 1994 Proceedings of Ocean Optics XII. International Society for Optics and Photonics Bergen, Norway, June 13, 1994 p194

    [26]

    Fournier G R, Jonasz M 1999 Proceedings of SPIEs International Symposium on Optical Science, Engineering, and Instrumentation Denver, CO, USA, July 18,1999 p62

    [27]

    Jerlov N G 1968 Optical Oceanography (Amsterdam: Elsevier) pp153155

    [28]

    Tan K K, Oakley J P 2001 J. Opt. Soc. Am. A 18 2460

    [29]

    Susstrunk S E, Holm J M, Finlayson G D 2001 Proceedings of SPIE 4300, Color Imaging: Device-Independent Color, Color Hardcopy, and Graphic Arts VI San Jose, CA, USA, December 21, 2000 p172

计量
  • 文章访问数:  2065
  • PDF下载量:  339
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-04
  • 修回日期:  2014-12-26
  • 刊出日期:  2015-05-05

不同光照条件下水下成像背景光的建模与研究

  • 1. 浙江大学 信息与电子工程学系, 杭州 310027
    基金项目: 

    国家重点基础研究发展计划(批准号: 2012CB315703)和国家自然科学基金(批准号: 61275027, 61177003)资助的课题.

摘要: 由于光在水中传输时的衰减和散射效应, 水下成像系统通常很难达到令人满意的成像效果, 而成像过程中由于光散射产生的背景光则是造成水下图像退化的主要原因. 本文对自然光照和人工光照两种不同光照条件下的水下成像背景光进行了建模和仿真分析. 结果显示: 自然光照下的无穷远处背景光与衰减系数成反比, 与散射系数成正比; 人工光照下的无穷远处背景光则与衰减系数、散射系数和相机-光源距离有关. 两种光照条件下的背景光都可以用无穷远处背景光的指数衰减表达式来表示. 水下图像背景光的强度主要与水体光学参数、相机-景物的距离、相机-光源的距离及相机成像角等因素有关. 本文的研究结论不仅可用于水下成像系统的设计与优化, 也可用来从水下图像背景光中估计水体光学参数、相机-景物距离等图像信息.

English Abstract

参考文献 (29)

目录

    /

    返回文章
    返回