搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于激光诱导叶绿素荧光寿命成像技术的植物荧光特性研究

万文博 华灯鑫 乐静 闫哲 周春艳

基于激光诱导叶绿素荧光寿命成像技术的植物荧光特性研究

万文博, 华灯鑫, 乐静, 闫哲, 周春艳
PDF
导出引用
  • 针对植物荧光遥感探测中信号易受干扰的问题, 提出了一种用于评估植物生长状况及环境监测的荧光寿命成像技术. 采用凹透镜对355 nm波长的激光扩束, 再照射植物激发叶绿素荧光, 由增强型电荷耦合器件接收荧光信号. 采用时间分辨测量法, 连续用相同激光脉冲照射植物以激发相同的荧光信号, 同时不断改变激光脉冲触发探测器启动的延时时间, 从而能够得到完整的离散荧光信号分布图像. 对植物特定位置点产生的离散荧光信号进行拟合, 再运用一种改进型的迭代解卷积法可反演高精度的荧光寿命; 进而反演图像各点的荧光寿命以生成植物的荧光寿命分布图. 该方法所绘制的荧光寿命图比荧光强度图能更准确地反映植物内部的叶绿素含量, 并对活体植物叶绿素荧光寿命的物理特性进行了初步研究, 证明叶绿素荧光寿命与植物生理状态存在一定关联; 并且叶绿素荧光寿命与活体植物所处环境存在着复杂的关系. 未来将与生物物理学家们合作, 继续探寻叶绿素荧光寿命与植物生存环境的关系.
      通信作者: 华灯鑫, xauthdx@163.com
    • 基金项目: 国家自然科学基金(批准号: 61275185)资助的课题.
    [1]

    Janusauskaite D, Feiziene D 2002 Acta. Agr. Scand. B-S. P. 62 7

    [2]

    Tol C, Verhoef W, Rosema A 2009 Agr. Forest Meteorol. 149 96

    [3]

    Men Z W, Fang W H, Li Z W, Qu G N, Gao S Q, Lu G H, Yang J G, Sun C L 2010 Chin. Phys. B 19 8

    [4]

    Fu C Y, Ng B K, Razul S G 2009 J. Biomed Opt. 14 064009

    [5]

    Zhao M, Peng L L 2010 Opt. Lett. 35 2910

    [6]

    Jordi R, Michael S, Santiago R 2012 Opt. Lett. 37 1229

    [7]

    Hungerford G, Birch D J S 1996 Meas. Sci. Technol. 7 121

    [8]

    Yuan S, Chin S L, Zeng H P 2015 Chin. Phys. B 24 1

    [9]

    Roberts M S, Dancik Y, Prow T W, Thorling C A, Lin L L, Grice J E, Robertson T A, Konig K, Becker W 2011 Eur. J. Pharm Biopharm 77 469

    [10]

    Gutierrez-Navarro O, Campos-Delgado D U, Arce-Santana E R, Maitland K C, Cheng S, Jabbour J, Malik B, Cuenca R, Jo J A 2014 Optics Express 22 12255

    [11]

    Miao Z, Li S F, Zhang Q Y 2006 Acta Phys. Sin. 55 4321 (in Chinese) [苗壮, 李善锋, 张庆瑜 2006 物理学报 55 4321]

    [12]

    Alex S, Mary L 2014 Opt Lett 39 5362

    [13]

    Oliveira F F, Ito A S, Bachmann L 2010 Appl. Optics 49 2244

    [14]

    Wei H Y, Xu T, Wang F, Peng X S, Wei X, Liu S Y 2013 Acta Optica Sinica 33 0823001 (in Chinese) [魏惠月, 徐涛, 王峰, 彭晓世, 韦欣, 刘慎业 2013 光学学报 33 0823001]

    [15]

    Garca M, Vzquez R, Isakina S, Lpez R 2012 Electrical Communications and Computers 27 317

    [16]

    Kennifer R D, Peter M A T 2003 Practical applications of chlorophyll fluorescence in plant biology (Holland: Kluwer Academic Publishers) pp109-132

    [17]

    Kotzagianni M, Couris S 2013 Chemical Physics Letters 561 36

    [18]

    Xu M F, Shi Y B, Gao W H, Chen H Y 2014 Chinese Journal of Lasers 41 0108005 (in Chinese) [徐美芳, 石云波, 高文宏, 陈海洋 2014 中国激光 41 0108005]

    [19]

    Mukamel E A, Babcock H, Zhuang X W 2012 Biophysical Journal 102 2391

    [20]

    Wan W B, Hua D X, Le J, Liu M X, Cao N 2013 Acta Phys. Sin. 62 190601(in Chinese) [万文博, 华灯鑫, 乐静, 刘美霞, 曹宁 2013 物理学报 62 190601]

    [21]

    Lichtenthaler H K 2011 Applications of chlorophyll fluorescene (Holland: Kluwer Academic Publishers) pp182-196

    [22]

    Kumar P J, Gopal R 2011 Spectroscopy-Biomedical Applications 26 129

    [23]

    Fang W H, Li Z W, Li Z L, Qu G N, Ouyang S L, Men Z W 2012 Acta Phys. Sin. 61 153301(in Chinese) [房文汇, 里佐威, 李占龙, 曲冠男, 欧阳顺利, 门志伟 2012 物理学报 61 153301]

  • [1]

    Janusauskaite D, Feiziene D 2002 Acta. Agr. Scand. B-S. P. 62 7

    [2]

    Tol C, Verhoef W, Rosema A 2009 Agr. Forest Meteorol. 149 96

    [3]

    Men Z W, Fang W H, Li Z W, Qu G N, Gao S Q, Lu G H, Yang J G, Sun C L 2010 Chin. Phys. B 19 8

    [4]

    Fu C Y, Ng B K, Razul S G 2009 J. Biomed Opt. 14 064009

    [5]

    Zhao M, Peng L L 2010 Opt. Lett. 35 2910

    [6]

    Jordi R, Michael S, Santiago R 2012 Opt. Lett. 37 1229

    [7]

    Hungerford G, Birch D J S 1996 Meas. Sci. Technol. 7 121

    [8]

    Yuan S, Chin S L, Zeng H P 2015 Chin. Phys. B 24 1

    [9]

    Roberts M S, Dancik Y, Prow T W, Thorling C A, Lin L L, Grice J E, Robertson T A, Konig K, Becker W 2011 Eur. J. Pharm Biopharm 77 469

    [10]

    Gutierrez-Navarro O, Campos-Delgado D U, Arce-Santana E R, Maitland K C, Cheng S, Jabbour J, Malik B, Cuenca R, Jo J A 2014 Optics Express 22 12255

    [11]

    Miao Z, Li S F, Zhang Q Y 2006 Acta Phys. Sin. 55 4321 (in Chinese) [苗壮, 李善锋, 张庆瑜 2006 物理学报 55 4321]

    [12]

    Alex S, Mary L 2014 Opt Lett 39 5362

    [13]

    Oliveira F F, Ito A S, Bachmann L 2010 Appl. Optics 49 2244

    [14]

    Wei H Y, Xu T, Wang F, Peng X S, Wei X, Liu S Y 2013 Acta Optica Sinica 33 0823001 (in Chinese) [魏惠月, 徐涛, 王峰, 彭晓世, 韦欣, 刘慎业 2013 光学学报 33 0823001]

    [15]

    Garca M, Vzquez R, Isakina S, Lpez R 2012 Electrical Communications and Computers 27 317

    [16]

    Kennifer R D, Peter M A T 2003 Practical applications of chlorophyll fluorescence in plant biology (Holland: Kluwer Academic Publishers) pp109-132

    [17]

    Kotzagianni M, Couris S 2013 Chemical Physics Letters 561 36

    [18]

    Xu M F, Shi Y B, Gao W H, Chen H Y 2014 Chinese Journal of Lasers 41 0108005 (in Chinese) [徐美芳, 石云波, 高文宏, 陈海洋 2014 中国激光 41 0108005]

    [19]

    Mukamel E A, Babcock H, Zhuang X W 2012 Biophysical Journal 102 2391

    [20]

    Wan W B, Hua D X, Le J, Liu M X, Cao N 2013 Acta Phys. Sin. 62 190601(in Chinese) [万文博, 华灯鑫, 乐静, 刘美霞, 曹宁 2013 物理学报 62 190601]

    [21]

    Lichtenthaler H K 2011 Applications of chlorophyll fluorescene (Holland: Kluwer Academic Publishers) pp182-196

    [22]

    Kumar P J, Gopal R 2011 Spectroscopy-Biomedical Applications 26 129

    [23]

    Fang W H, Li Z W, Li Z L, Qu G N, Ouyang S L, Men Z W 2012 Acta Phys. Sin. 61 153301(in Chinese) [房文汇, 里佐威, 李占龙, 曲冠男, 欧阳顺利, 门志伟 2012 物理学报 61 153301]

  • [1] 万文博, 华灯鑫, 乐静, 刘美霞, 曹宁. 激光诱导叶绿素荧光寿命的测量及其特性分析. 物理学报, 2013, 62(19): 190601. doi: 10.7498/aps.62.190601
    [2] 王茜蒨, 魏光辉. 机油类产品激光诱导荧光时间特性的研究. 物理学报, 2002, 51(5): 1031-1034. doi: 10.7498/aps.51.1031
    [3] 闫博, 陈力, 陈爽, 李猛, 殷一民, 周江宁. 结构光照明技术在二维激光诱导荧光成像去杂散光中的应用. 物理学报, 2019, 68(21): 218701. doi: 10.7498/aps.68.20190977
    [4] 李宏斌, 刘文清, 张玉钧, 丁志群, 赵南京, 魏庆农, 王玉平, 杨立书. 基于径向基函数网络的激光诱导荧光特征光谱分离算法. 物理学报, 2005, 54(9): 4451-4457. doi: 10.7498/aps.54.4451
    [5] 孙怡雯, 屈军乐, 赵羚伶, 许改霞, 丁志华, 牛憨笨. 眼底视网膜色素上皮层细胞脂褐素及氧化黑色素自体荧光寿命成像研究. 物理学报, 2008, 57(2): 772-777. doi: 10.7498/aps.57.772
    [6] 景敏, 华灯鑫, 乐静. 荧光激光雷达技术探测水面油污染系统仿真研究. 物理学报, 2016, 65(7): 070704. doi: 10.7498/aps.65.070704
    [7] 陆庆正, 陈旸, 唐松柏, 马兴孝. 草酰氯的激光诱导荧光激发谱. 物理学报, 1991, 40(6): 878-884. doi: 10.7498/aps.40.878
    [8] 陈旸, 陆庆正, 王冬青, 盛六四, 王鸿飞, 张允武, 俞书勤, 马兴孝. 超声射流冷却CCl2自由基的激光诱导荧光激发谱. 物理学报, 1991, 40(6): 885-890. doi: 10.7498/aps.40.885
    [9] 王储记, 陈 军, 章, 张立敏, 戴静华, 陈从香, 马兴孝. 超声冷却SO2( 1A2— 1A1)激光诱导荧光激发谱的转动分析. 物理学报, 1998, 47(8): 1258-1264. doi: 10.7498/aps.47.1258
    [10] 李 钢, 徐燕骥, 穆克进, 聂超群, 朱俊强, 张 翼, 李汉明. 平面激光诱导荧光技术在交错电极介质阻挡放电等离子体研究中的初步应用. 物理学报, 2008, 57(10): 6444-6449. doi: 10.7498/aps.57.6444
    [11] 高文斌, 沈玉其, J. H?GER, W. KRIEGER. 激光诱导荧光法研究CH2Cl2分子的振动能量转移. 物理学报, 1985, 34(10): 1261-1269. doi: 10.7498/aps.34.1261
    [12] 刘雄波, 林丹樱, 吴茜茜, 严伟, 罗腾, 杨志刚, 屈军乐. 荧光寿命显微成像技术及应用的最新研究进展. 物理学报, 2018, 67(17): 178701. doi: 10.7498/aps.67.20180320
    [13] 黄雯, 许祥源, 赵文正, 於江辰, 陈瓞延. Ru原子荧光及其寿命的测量. 物理学报, 1993, 42(7): 1031-1033. doi: 10.7498/aps.42.1031
    [14] 黄雯;许样源;赵文正;於江辰;陈瓞延. Ru原子荧光及其寿命的测量. 物理学报, 1991, 40(7): 1031-1033. doi: 10.7498/aps.40.1031
    [15] 崔执凤, 陈 东, 凤尔银, 季学韩, 陆同兴, 李学初. 激光诱导NO2分子500—532nm区荧光激发谱的实验研究. 物理学报, 2000, 49(11): 2151-2158. doi: 10.7498/aps.49.2151
    [16] 饶志敏, 华灯鑫, 何廷尧, 乐静. 基于本征荧光的生物气溶胶测量激光雷达性能. 物理学报, 2016, 65(20): 200701. doi: 10.7498/aps.65.200701
    [17] 林丹樱, 牛敬敬, 刘雄波, 张潇, 张娇, 于斌, 屈军乐. 荧光寿命数据的相量分析及其应用. 物理学报, 2020, 69(16): 168703. doi: 10.7498/aps.69.20200554
    [18] 苗 壮, 李善锋, 张庆瑜. Y共掺对掺Er硅酸盐玻璃光致荧光及荧光寿命的影响. 物理学报, 2006, 55(8): 4321-4326. doi: 10.7498/aps.55.4321
    [19] 王琛, 王桂英, 徐至展. 全内反射荧光显微术应用于单分子荧光的纵向成像. 物理学报, 2004, 53(5): 1325-1330. doi: 10.7498/aps.53.1325
    [20] 陈丹妮, 刘磊, 于斌, 牛憨笨. HeLa细胞突起中微丝束的纳米分辨荧光成像. 物理学报, 2010, 59(10): 6948-6954. doi: 10.7498/aps.59.6948
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1150
  • PDF下载量:  359
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-13
  • 修回日期:  2015-06-04
  • 刊出日期:  2015-10-05

基于激光诱导叶绿素荧光寿命成像技术的植物荧光特性研究

  • 1. 西安理工大学机械与精密仪器工程学院, 西安 710048
  • 通信作者: 华灯鑫, xauthdx@163.com
    基金项目: 

    国家自然科学基金(批准号: 61275185)资助的课题.

摘要: 针对植物荧光遥感探测中信号易受干扰的问题, 提出了一种用于评估植物生长状况及环境监测的荧光寿命成像技术. 采用凹透镜对355 nm波长的激光扩束, 再照射植物激发叶绿素荧光, 由增强型电荷耦合器件接收荧光信号. 采用时间分辨测量法, 连续用相同激光脉冲照射植物以激发相同的荧光信号, 同时不断改变激光脉冲触发探测器启动的延时时间, 从而能够得到完整的离散荧光信号分布图像. 对植物特定位置点产生的离散荧光信号进行拟合, 再运用一种改进型的迭代解卷积法可反演高精度的荧光寿命; 进而反演图像各点的荧光寿命以生成植物的荧光寿命分布图. 该方法所绘制的荧光寿命图比荧光强度图能更准确地反映植物内部的叶绿素含量, 并对活体植物叶绿素荧光寿命的物理特性进行了初步研究, 证明叶绿素荧光寿命与植物生理状态存在一定关联; 并且叶绿素荧光寿命与活体植物所处环境存在着复杂的关系. 未来将与生物物理学家们合作, 继续探寻叶绿素荧光寿命与植物生存环境的关系.

English Abstract

参考文献 (23)

目录

    /

    返回文章
    返回