搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

类钠离子光电子角分布的非偶极效应

马堃 颉录有 张登红 蒋军 董晨钟

引用本文:
Citation:

类钠离子光电子角分布的非偶极效应

马堃, 颉录有, 张登红, 蒋军, 董晨钟

Non-dipole effects in the angular distributions of photoelectrons on sodium-like ions

Ma Kun, Xie Lu-You, Zhang Deng-Hong, Jiang Jun, Dong Chen-Zhong
PDF
导出引用
  • 基于密度矩阵理论和多组态Dirac-Fock方法,系统地研究了不同入射光子能量下类钠离子(20Z92)3s,2p1/2和2p3/2子壳层的光电离过程,讨论了辐射场与电子相互作用的多极项对光电子角分布的影响,并给出了光电子角分布的偶极和非偶极参数.结果表明,非偶极项对光电子角分布的影响不仅与入射光子能量有关,而且与靶离子的原子序数、被电离电子的壳层等有着密切的关系.总体上,非偶极项对2p1/2,3/2子壳层光电子角分布的影响大于对3s子壳层光电子角分布的影响;电偶极近似下,入射光子能量、靶离子核电荷数对s子壳层光电子角分布轮廓影响不大,对p子壳层光电子角分布影响较大,在高能光子入射下,低Z离子的p子壳层光电子角分布出现反常的角分布情况;考虑非偶极项之后,p子壳层的反常光电子角分布消失.
    Photoionization processes widely exist in the astrophysical plasma and the high temperature laboratory plasma. Compared with the traditional photoelectron energy spectrum, the photoelectron angular distribution is not only related to the amplitude of the photoionization channels, but also sensitive to the phases of these channels. So the photoelectron angular distribution contains much more quantum information about the photoionization processes and is used to provide stringent tests of our understanding of basic physical processes underlying gas- and condensed-phase interaction with radiation, as well as a tool to probe physical and chemical structure in solids and surfaces. For a long time, the dipole approximation has been the basis in the study of the photoelectron angular distribution, but with the progress of light source, such as the fourth generation synchrotron facilities, more and more attention is paid to the non-dipole effect of the photoelectron angular distribution. In thispresent work, the photoionization processes of sodium-like ions (20Z92) are studied for the different incident photon energies based on the multiconfiguration Dirac-Fock method and the density matrix theory. The influences of the non-dipole terms on the photoelectron angular distributions, which arise from the multipole expansion of the electron-photon interaction, are discussed in detail. The relationship between the dipole and non-dipole parameters of the photoelectron angular distribution along with the atomic number is given. It is found that the influence of non-dipole terms on the photoelectron angular distribution is related to the incident photon energy and the atomic number of the target ion and the subshell of the ionized electron. In general, the influences of the non-dipole terms on the photoelectron angular distribution of p subshell are larger than those of the s subshell. In the electric dipole approximation, the s subshell photoelectron angular distribution is nearly independent of the photon energy and nuclear charge number, but this situation is not for the p subshell. With the increase of photon energy, an abnormal angular distribution is found for the p subshell photoelectron. However, if the non-dipole effects are included, the abnormal photoelectron angular distribution of p subshell disappears and the photoelectron distribution has maximum values respectively near 45o and 135o with respect to the polarization vector of incident light, that is, the photoelectron distribution has an obvious forward scattering characteristic.
      通信作者: 马堃, makun@hsu.edu.cn;dongcz@nwnu.edu.cn ; 董晨钟, makun@hsu.edu.cn;dongcz@nwnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11274254,U1332206,U1331122,11464042,11564036);安徽省高校优秀青年人才支持计划重点项目(批准号:gxyqZD2016301);安徽省高校自然科学研究项目(批准号:KJHS2015B01)和黄山学院自然科学研究项目(批准号:2016xskq003)资助的课题.
      Corresponding author: Ma Kun, makun@hsu.edu.cn;dongcz@nwnu.edu.cn ; Dong Chen-Zhong, makun@hsu.edu.cn;dongcz@nwnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos.11274254,U1332206,U1331122,11464042,11564036),the Key Project for Young Talents in College of Anhui Province,China (Grant No.gxyqZD2016301),the Natural Science Research Project of Anhui Province,China (Grant No.KJHS2015B01),and the Natural Science Research Project of Huangshan University,China (Grant No.2016xskq003).
    [1]

    Jablonski A, Powell C J 2015 J. Electron Spectrosc. Relat. Phenom. 199 27

    [2]

    Ricz S, Buhr T, Kövér á, Holste K, Borovik A, Schippers S, Varga D, Müller A 2014 Phys. Rev. A 90 013410

    [3]

    Ma K, Dong C Z, Xie L Y, Qu Y Z 2014 Chin. Phys. Lett. 31 103201

    [4]

    Ma K, Dong C Z, Xie L Y, Ding X B, Qu Y Z 2014 Chin. Phys. Lett. 31 053201

    [5]

    Guillemin R, Hemmers O, Lindle D W, Manson S T 2006 Radiat. Phys. Chem. 75 2258

    [6]

    Schmidt V 1992 Rep. Prog. Phys. 55 1483

    [7]

    Krässig B, Jung M, Gemmell D S, Kanter E P, LeBrun T, Southworth S H, Young L 1995 Phys. Rev. Lett. 75 4736

    [8]

    Jung M, Krässig B, Gemmell D S, Kanter E P, LeBrun T, Southworth S H, Young L 1996 Phys. Rev. A 54 2127

    [9]

    Hemmers O, Fisher G, Glans P, Hansen D L, Wang H, Whitfield S B, Wehlitz R, Levin J C, Sellin I A, Perera R C C, Dias E W B, Chakraborty H S, Deshmukh P C, Manson S T, Lindle D W 1997 J. Phys. B 30 L727

    [10]

    Holste K, Borovik A A, Buhr T, Ricz S, Kövér á, Bernhardt D, Schippers S, Varga D, Müller A 2014 J. Phys. Confer. Ser. 488 022041

    [11]

    Ma K, Xie L Y, Zhang D H, Dong C Z 2015 Chin. Phys. B 24 073402

    [12]

    Li C Y, Han X Y, Wang J G, Qu Y Z 2013 Chin. Phys. B 22 123201

    [13]

    Grant I P 1970 Adv. Phys. 19 747

    [14]

    Jönsson P, He X, Fischer C F, Grant I P 2007 Comput. Phys. Commun. 177 597

    [15]

    Fritzsche S 2012 Comput. Phys. Commun. 183 1525

    [16]

    Ma K, Xie L Y, Zhang D H, Dong C Z, Qu Y Z 2016 Acta Phys. Sci. 65 083201 (in Chinese)[马堃, 颉录有, 张登红, 董晨钟, 屈一至 2016 物理学报 65 083201]

    [17]

    Blum K 2012 Density Matrix Theory and Applications (Vol. 3) (Berlin:Springer) pp61-162

    [18]

    Balashov V V, Grum-Grahimailo A N, Kabachnik N M 2000 Polarization and Correlation in Atomic Collisions (New York:Kluwer Academic/Plenum) pp45-97

    [19]

    Rose M E 1957 Elementary Theory of Angular Momentum (New York:Wiley) pp32-94

    [20]

    Derevianko A, Hemmers O, Oblad S, Glans P, Wang H, Whitfield B, Wehlitz R, Sellin I A, Johnson W R, Lindle D W 2000 Phys. Rev. Lett. 84 2116

    [21]

    Jablonski A 2013 J. Electron Spectrosc. Relat. Phenom. 189 81

    [22]

    Scofield J H 1989 Phys. Rev. A 40 3054

  • [1]

    Jablonski A, Powell C J 2015 J. Electron Spectrosc. Relat. Phenom. 199 27

    [2]

    Ricz S, Buhr T, Kövér á, Holste K, Borovik A, Schippers S, Varga D, Müller A 2014 Phys. Rev. A 90 013410

    [3]

    Ma K, Dong C Z, Xie L Y, Qu Y Z 2014 Chin. Phys. Lett. 31 103201

    [4]

    Ma K, Dong C Z, Xie L Y, Ding X B, Qu Y Z 2014 Chin. Phys. Lett. 31 053201

    [5]

    Guillemin R, Hemmers O, Lindle D W, Manson S T 2006 Radiat. Phys. Chem. 75 2258

    [6]

    Schmidt V 1992 Rep. Prog. Phys. 55 1483

    [7]

    Krässig B, Jung M, Gemmell D S, Kanter E P, LeBrun T, Southworth S H, Young L 1995 Phys. Rev. Lett. 75 4736

    [8]

    Jung M, Krässig B, Gemmell D S, Kanter E P, LeBrun T, Southworth S H, Young L 1996 Phys. Rev. A 54 2127

    [9]

    Hemmers O, Fisher G, Glans P, Hansen D L, Wang H, Whitfield S B, Wehlitz R, Levin J C, Sellin I A, Perera R C C, Dias E W B, Chakraborty H S, Deshmukh P C, Manson S T, Lindle D W 1997 J. Phys. B 30 L727

    [10]

    Holste K, Borovik A A, Buhr T, Ricz S, Kövér á, Bernhardt D, Schippers S, Varga D, Müller A 2014 J. Phys. Confer. Ser. 488 022041

    [11]

    Ma K, Xie L Y, Zhang D H, Dong C Z 2015 Chin. Phys. B 24 073402

    [12]

    Li C Y, Han X Y, Wang J G, Qu Y Z 2013 Chin. Phys. B 22 123201

    [13]

    Grant I P 1970 Adv. Phys. 19 747

    [14]

    Jönsson P, He X, Fischer C F, Grant I P 2007 Comput. Phys. Commun. 177 597

    [15]

    Fritzsche S 2012 Comput. Phys. Commun. 183 1525

    [16]

    Ma K, Xie L Y, Zhang D H, Dong C Z, Qu Y Z 2016 Acta Phys. Sci. 65 083201 (in Chinese)[马堃, 颉录有, 张登红, 董晨钟, 屈一至 2016 物理学报 65 083201]

    [17]

    Blum K 2012 Density Matrix Theory and Applications (Vol. 3) (Berlin:Springer) pp61-162

    [18]

    Balashov V V, Grum-Grahimailo A N, Kabachnik N M 2000 Polarization and Correlation in Atomic Collisions (New York:Kluwer Academic/Plenum) pp45-97

    [19]

    Rose M E 1957 Elementary Theory of Angular Momentum (New York:Wiley) pp32-94

    [20]

    Derevianko A, Hemmers O, Oblad S, Glans P, Wang H, Whitfield B, Wehlitz R, Sellin I A, Johnson W R, Lindle D W 2000 Phys. Rev. Lett. 84 2116

    [21]

    Jablonski A 2013 J. Electron Spectrosc. Relat. Phenom. 189 81

    [22]

    Scofield J H 1989 Phys. Rev. A 40 3054

  • [1] 戈迪, 赵国鹏, 祁月盈, 陈晨, 高俊文, 侯红生. 等离子体环境中相对论效应对类氢离子光电离过程的影响. 物理学报, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20240016
    [2] 雷建廷, 余璇, 史国强, 闫顺成, 孙少华, 王全军, 丁宝卫, 马新文, 张少锋, 丁晶洁. 基于极紫外光的Ne, Xe原子电离. 物理学报, 2022, 71(14): 143201. doi: 10.7498/aps.71.20220341
    [3] 马堃, 朱林繁, 颉录有. Ar原子和K+离子序列双光双电离光电子角分布的非偶极效应. 物理学报, 2022, 71(6): 063201. doi: 10.7498/aps.71.20211905
    [4] 周逸凡, 杨慕紫, 佘峰权, 龚力, 张晓琪, 陈建, 宋树芹, 谢方艳. X射线光电子能谱在固态锂离子电池界面研究中的应用. 物理学报, 2021, 70(17): 178801. doi: 10.7498/aps.70.20210180
    [5] 马堃, 颉录有, 董晨钟. Ar原子序列双光双电离产生光电子角分布的理论计算. 物理学报, 2020, 69(5): 053201. doi: 10.7498/aps.69.20191814
    [6] 周悦, 胡志远, 毕大炜, 武爱民. 硅基光电子器件的辐射效应研究进展. 物理学报, 2019, 68(20): 204206. doi: 10.7498/aps.68.20190543
    [7] 马堃, 颉录有, 张登红, 董晨钟, 屈一至. 氖原子光电子角分布的理论计算. 物理学报, 2016, 65(8): 083201. doi: 10.7498/aps.65.083201
    [8] 杨发展, 沈丽如, 王世庆, 唐德礼, 金凡亚, 刘海峰. 等离子体增强化学气相沉积法制备含氢类金刚石膜的紫外Raman光谱和X射线光电子能谱研究. 物理学报, 2013, 62(1): 017802. doi: 10.7498/aps.62.017802
    [9] 王金霞, 师应龙, 张登红, 颉录有, 董晨钟. 类锂离子双电子复合过程中辐射光子角分布和极化特性的理论研究. 物理学报, 2013, 62(23): 233401. doi: 10.7498/aps.62.233401
    [10] 韩录会, 张崇宏, 张丽卿, 杨义涛, 宋银, 孙友梅. 低速高电荷态重离子辐照的GaN晶体表面X射线光电子能谱研究. 物理学报, 2010, 59(7): 4584-4590. doi: 10.7498/aps.59.4584
    [11] 唐小锋, 牛铭理, 周晓国, 刘世林. 基于阈值光电子-光离子符合技术的分子离子光谱和解离动力学研究. 物理学报, 2010, 59(10): 6940-6947. doi: 10.7498/aps.59.6940
    [12] 朱婧晶, 苟秉聪. 类氦离子高双激发态电子关联效应的研究. 物理学报, 2009, 58(8): 5285-5290. doi: 10.7498/aps.58.5285
    [13] 郑颖辉, 曾志男, 李儒新, 徐至展. 极紫外阿秒脉冲在高次谐波产生过程中引起的非偶极效应. 物理学报, 2007, 56(4): 2243-2249. doi: 10.7498/aps.56.2243
    [14] 李晓苇, 李新政, 江晓利, 于 威, 田晓东, 杨少鹏, 傅广生. S+Au增感中心的电子陷阱效应对光电子行为的影响. 物理学报, 2004, 53(6): 2019-2023. doi: 10.7498/aps.53.2019
    [15] 齐静波, 陈重阳, 王炎森. 类钠离子的电子碰撞电离截面. 物理学报, 2001, 50(8): 1475-1480. doi: 10.7498/aps.50.1475
    [16] 冯健, 高学彦. 强场自电离光电子谱中峰开关效应的破坏. 物理学报, 1993, 42(6): 886-892. doi: 10.7498/aps.42.886
    [17] 李世普, 樊东辉, 王国梅, 邢宁, 任卫. Fe离子注入多晶Al2O3的光电子能谱研究. 物理学报, 1991, 40(6): 857-861. doi: 10.7498/aps.40.857
    [18] 吴柏枚, 陈兆甲, 鲍世宁, 鲍德松, 季振国, 刘古. 非晶Nb-Ni合金晶化过程中紫外光电子能谱研究. 物理学报, 1989, 38(4): 675-678. doi: 10.7498/aps.38.675
    [19] 姚关华, 徐至展. 光电子谱的峰开关效应. 物理学报, 1989, 38(5): 864-868. doi: 10.7498/aps.38.864
    [20] 吴全德. 光电子的初能量分布与角度分布. 物理学报, 1958, 14(2): 139-152. doi: 10.7498/aps.14.139
计量
  • 文章访问数:  4863
  • PDF下载量:  208
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-28
  • 修回日期:  2016-11-24
  • 刊出日期:  2017-02-05

/

返回文章
返回