搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

线宽增强因子对光反馈半导体激光器混沌信号生成随机数性能的影响

韩韬 刘香莲 李璞 郭晓敏 郭龑强 王云才

线宽增强因子对光反馈半导体激光器混沌信号生成随机数性能的影响

韩韬, 刘香莲, 李璞, 郭晓敏, 郭龑强, 王云才
PDF
导出引用
导出核心图
  • 基于光反馈半导体激光器产生的宽带混沌信号作为物理熵源生成物理随机数已得到广泛研究.线宽增强因子的存在会导致半导体激光器出现大量不稳定动态特性,因此,本文着重研究半导体激光器的线宽增强因子对生成随机数性能的影响.数值仿真结果表明:随着线宽增强因子的增加,光反馈半导体激光器输出混沌信号的延时峰值逐渐减小、最大李雅普诺夫指数逐渐增大.基于不同线宽增强因子下产生的混沌信号提取随机数,并利用NIST SP 800-22软件对生成随机数的性能进行测试.测试结果表明,选取线宽增强因子较大的半导体激光器产生混沌信号作为物理熵源易于生成性能良好的随机数.
      通信作者: 刘香莲, liuxianglian@tyut.edu.cn
    • 基金项目: 山西省自然科学基金(批准号:201601D021021)、国家自然科学基金(批准号:61671316,61505137,61405138,61505136)、国家自然科学基金科学仪器基础研究专款(批准号:61227016)、国家国际科技合作专项(批准号:2014DFA50870)和太原理工大学引进人才基金(批准号:tyutrc201387a)资助的课题.
    [1]

    Li P 2014 Ph. D. Dissertation (Taiyuan: Taiyuan University of Technology) (in Chinese) [李璞 2014 博士学位论文(太原: 太原理工大学)]

    [2]

    Xu P, Wong Y L, Hoduchi T K, Abshire P A 2006 Electron. Lett. 42 1346

    [3]

    Petrie C S, Connelly J A 2000 IEEE Trans. Circuits I 47 615

    [4]

    Bucci M, Germani L, Luzzi R, Trifiletti A, Varanonuovo M 2003 IEEE Trans. Comput. 52 403

    [5]

    Schmidt H 1970 J. Appl. Phys. 41 462

    [6]

    Stipčević M, Rogina B M 2007 Rev. Sci. Instrum. 78 045104

    [7]

    Martino A J, Morris G M 1991 Appl. Opt. 30 981

    [8]

    Jennewein T, Achleitner U, Weihs G, Weinfurter H, Zeilinger A 2000 Rev. Sci. Instrum. 71 1675

    [9]

    Guo H, Liu Y, Dang A H, Wei W 2009 Chin. Sci. Bull. 54 3651 (in Chinese) [郭弘, 刘钰, 党安红, 韦韦 2009 科学通报 54 3651]

    [10]

    Ren M, Wu E, Liang Y, Jian Y, Wu G, Zeng H 2011 Phys. Rev. A 83 023820

    [11]

    Zhou Q, Hu Y, Liao X F 2008 Acta Phys. Sin. 57 5413 (in Chinese) [周庆, 胡月, 廖晓峰 2008 物理学报 57 5413]

    [12]

    Zhang M J, Liu T G, Wang A B, Zheng J Y, Meng L N, Zhang Z X, Wang Y C 2011 Opt. Lett. 36 1008

    [13]

    Zhao Q C, Yin H X 2013 Laser Optoelectron. Prog. 50 030003 (in Chinese) [赵清春, 殷洪玺 2013 激光与光电子学进展 50 030003]

    [14]

    Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimiri S, Yoshimura K, Davis P 2008 Nat. Photon. 2 728

    [15]

    Reidler I, Aviad Y, Rosenbluh M, Kanter I 2009 Phys. Rev. Lett. 103 024102

    [16]

    Kanter I, Aviad Y, Reidler I, Cohen E, Rosenbluh M 2010 Nat. Photon. 4 58

    [17]

    Li X, Chan S 2012 Opt. Lett. 37 2163

    [18]

    Li X, Chan S 2013 IEEE J. Quantum Electron. 49 829

    [19]

    Argyris A, Deligiannidis S, Pikasis E, Bogris A, Syvridis D 2010 Opt. Express 18 18763

    [20]

    Tang X, Wu J G, Xia G Q, Wu Z M 2011 Acta Phys. Sin. 60 110509 (in Chinese) [唐曦, 吴加贵, 夏光琼, 吴正茂 2011 物理学报 60 110509]

    [21]

    Wu J G, Tang X, Wu Z M, Xia G Q, Feng G Y 2012 Laser Phys. 22 1476

    [22]

    Li N Q, Kim B, Chizhevsky V N, Locquet A, Bloch M, Citrin D S, Pan W 2014 Opt. Express 22 6634

    [23]

    Wang A, Li P, Zhang J, Zhang J, Zhang J, Li L, Wang Y 2013 Opt. Express 21 20452

    [24]

    Yang H B, Wu Z M, Tang X, Wu J G, Xia G Q 2015 Acta Phys. Sin. 64 084204 (in Chinese) [杨海波, 吴正茂, 唐曦, 吴加贵, 夏光琼 2015 物理学报 64 084204]

    [25]

    Hirano K, Amano K, Uchida A, Naito S, Inoue M, Yoshimiri S, Yoshinura K, Davis P 2009 IEEE J. Quantum Electron. 45 1367

    [26]

    Zhang J B, Zhang J Z, Yang Y B, Liang J S, Wang Y C 2010 Acta Phys. Sin. 59 7679 (in Chinese) [张继兵, 张建忠, 杨毅彪, 梁君生, 王云才 2010 物理学报 59 7679]

    [27]

    Xiao B J, Hou J Y, Zhang J Z, Xue L G, Wang Y C 2012 Acta Phys. Sin. 61 150502 (in Chinese) [萧宝瑾, 侯佳音, 张建忠, 薛路刚, 王云才 2012 物理学报 61 150502]

    [28]

    Zhang J Z, Wang Y C, Xue L G, Hou J Y, Zhang B B, Wang A B, Zhang M J 2012 Appl. Opt. 51 1709

    [29]

    Hwang S K, Liu J M 2000 Opt. Commun. 183 195

    [30]

    Hwang S K, Liang D H 2006 Appl. Phys. Lett. 89 061120

    [31]

    Zhang M J, Liu T G, Li J X, Wang Y C 2011 Acta Phot. Sin. 40 542 (in Chinese) [张明江, 刘铁根, 李静霞, 王云才 2011 光子学报 40 542]

    [32]

    Wieczorek S, Chow W W 2005 Opt. Commun. 246 471

    [33]

    Wieczorek S, Krauskopf B, Simpson T B, Lenstra D 2005 Phys. Report 416 1

    [34]

    Pochet M, Naderi N A, Terry N, Kovanis V, Lester L F 2009 Opt. Express 17 20623

    [35]

    Liu G, Jin X, Chuang S L 2001 IEEE Photon. Technol. Lett. 13 430

    [36]

    Yang S Q, Zhang X H, Zhao C A 2000 Acta Phys. Sin. 49 636 (in Chinese) [杨绍清, 章新华, 赵长安 2000 物理学报 49 636]

  • [1]

    Li P 2014 Ph. D. Dissertation (Taiyuan: Taiyuan University of Technology) (in Chinese) [李璞 2014 博士学位论文(太原: 太原理工大学)]

    [2]

    Xu P, Wong Y L, Hoduchi T K, Abshire P A 2006 Electron. Lett. 42 1346

    [3]

    Petrie C S, Connelly J A 2000 IEEE Trans. Circuits I 47 615

    [4]

    Bucci M, Germani L, Luzzi R, Trifiletti A, Varanonuovo M 2003 IEEE Trans. Comput. 52 403

    [5]

    Schmidt H 1970 J. Appl. Phys. 41 462

    [6]

    Stipčević M, Rogina B M 2007 Rev. Sci. Instrum. 78 045104

    [7]

    Martino A J, Morris G M 1991 Appl. Opt. 30 981

    [8]

    Jennewein T, Achleitner U, Weihs G, Weinfurter H, Zeilinger A 2000 Rev. Sci. Instrum. 71 1675

    [9]

    Guo H, Liu Y, Dang A H, Wei W 2009 Chin. Sci. Bull. 54 3651 (in Chinese) [郭弘, 刘钰, 党安红, 韦韦 2009 科学通报 54 3651]

    [10]

    Ren M, Wu E, Liang Y, Jian Y, Wu G, Zeng H 2011 Phys. Rev. A 83 023820

    [11]

    Zhou Q, Hu Y, Liao X F 2008 Acta Phys. Sin. 57 5413 (in Chinese) [周庆, 胡月, 廖晓峰 2008 物理学报 57 5413]

    [12]

    Zhang M J, Liu T G, Wang A B, Zheng J Y, Meng L N, Zhang Z X, Wang Y C 2011 Opt. Lett. 36 1008

    [13]

    Zhao Q C, Yin H X 2013 Laser Optoelectron. Prog. 50 030003 (in Chinese) [赵清春, 殷洪玺 2013 激光与光电子学进展 50 030003]

    [14]

    Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimiri S, Yoshimura K, Davis P 2008 Nat. Photon. 2 728

    [15]

    Reidler I, Aviad Y, Rosenbluh M, Kanter I 2009 Phys. Rev. Lett. 103 024102

    [16]

    Kanter I, Aviad Y, Reidler I, Cohen E, Rosenbluh M 2010 Nat. Photon. 4 58

    [17]

    Li X, Chan S 2012 Opt. Lett. 37 2163

    [18]

    Li X, Chan S 2013 IEEE J. Quantum Electron. 49 829

    [19]

    Argyris A, Deligiannidis S, Pikasis E, Bogris A, Syvridis D 2010 Opt. Express 18 18763

    [20]

    Tang X, Wu J G, Xia G Q, Wu Z M 2011 Acta Phys. Sin. 60 110509 (in Chinese) [唐曦, 吴加贵, 夏光琼, 吴正茂 2011 物理学报 60 110509]

    [21]

    Wu J G, Tang X, Wu Z M, Xia G Q, Feng G Y 2012 Laser Phys. 22 1476

    [22]

    Li N Q, Kim B, Chizhevsky V N, Locquet A, Bloch M, Citrin D S, Pan W 2014 Opt. Express 22 6634

    [23]

    Wang A, Li P, Zhang J, Zhang J, Zhang J, Li L, Wang Y 2013 Opt. Express 21 20452

    [24]

    Yang H B, Wu Z M, Tang X, Wu J G, Xia G Q 2015 Acta Phys. Sin. 64 084204 (in Chinese) [杨海波, 吴正茂, 唐曦, 吴加贵, 夏光琼 2015 物理学报 64 084204]

    [25]

    Hirano K, Amano K, Uchida A, Naito S, Inoue M, Yoshimiri S, Yoshinura K, Davis P 2009 IEEE J. Quantum Electron. 45 1367

    [26]

    Zhang J B, Zhang J Z, Yang Y B, Liang J S, Wang Y C 2010 Acta Phys. Sin. 59 7679 (in Chinese) [张继兵, 张建忠, 杨毅彪, 梁君生, 王云才 2010 物理学报 59 7679]

    [27]

    Xiao B J, Hou J Y, Zhang J Z, Xue L G, Wang Y C 2012 Acta Phys. Sin. 61 150502 (in Chinese) [萧宝瑾, 侯佳音, 张建忠, 薛路刚, 王云才 2012 物理学报 61 150502]

    [28]

    Zhang J Z, Wang Y C, Xue L G, Hou J Y, Zhang B B, Wang A B, Zhang M J 2012 Appl. Opt. 51 1709

    [29]

    Hwang S K, Liu J M 2000 Opt. Commun. 183 195

    [30]

    Hwang S K, Liang D H 2006 Appl. Phys. Lett. 89 061120

    [31]

    Zhang M J, Liu T G, Li J X, Wang Y C 2011 Acta Phot. Sin. 40 542 (in Chinese) [张明江, 刘铁根, 李静霞, 王云才 2011 光子学报 40 542]

    [32]

    Wieczorek S, Chow W W 2005 Opt. Commun. 246 471

    [33]

    Wieczorek S, Krauskopf B, Simpson T B, Lenstra D 2005 Phys. Report 416 1

    [34]

    Pochet M, Naderi N A, Terry N, Kovanis V, Lester L F 2009 Opt. Express 17 20623

    [35]

    Liu G, Jin X, Chuang S L 2001 IEEE Photon. Technol. Lett. 13 430

    [36]

    Yang S Q, Zhang X H, Zhao C A 2000 Acta Phys. Sin. 49 636 (in Chinese) [杨绍清, 章新华, 赵长安 2000 物理学报 49 636]

  • [1] 张继业, 张建伟, 曾玉刚, 张俊, 宁永强, 张星, 秦莉, 刘云, 王立军. 高功率垂直外腔面发射半导体激光器增益设计及制备. 物理学报, 2020, 69(5): 054204. doi: 10.7498/aps.69.20191787
    [2] 庄志本, 李军, 刘静漪, 陈世强. 基于新的五维多环多翼超混沌系统的图像加密算法. 物理学报, 2020, 69(4): 040502. doi: 10.7498/aps.69.20191342
    [3] 周峰, 蔡宇, 邹德峰, 胡丁桐, 张亚静, 宋有建, 胡明列. 钛宝石飞秒激光器中孤子分子的内部动态探测. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191989
    [4] 张战刚, 雷志锋, 童腾, 李晓辉, 王松林, 梁天骄, 习凯, 彭超, 何玉娟, 黄云, 恩云飞. 14 nm FinFET和65 nm平面工艺静态随机存取存储器中子单粒子翻转对比. 物理学报, 2020, 69(5): 056101. doi: 10.7498/aps.69.20191209
    [5] 吴美梅, 张超, 张灿, 孙倩倩, 刘玫. 三维金字塔立体复合基底表面增强拉曼散射特性. 物理学报, 2020, 69(5): 058101. doi: 10.7498/aps.69.20191636
    [6] 张雅男, 詹楠, 邓玲玲, 陈淑芬. 利用银纳米立方增强效率的多层溶液加工白光有机发光二极管. 物理学报, 2020, 69(4): 047801. doi: 10.7498/aps.69.20191526
    [7] 王晓雷, 赵洁惠, 李淼, 姜光科, 胡晓雪, 张楠, 翟宏琛, 刘伟伟. 基于人工表面等离激元的厚度渐变镀银条带探针实现太赫兹波的紧聚焦和场增强. 物理学报, 2020, 69(5): 054201. doi: 10.7498/aps.69.20191531
    [8] 胡渝曜, 梁东, 王晶, 刘军. 基于电动可调焦透镜的大范围快速光片显微成像. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191908
    [9] 廖天军, 吕贻祥. 热光伏能量转换器件的热力学极限与优化性能预测. 物理学报, 2020, 69(5): 057202. doi: 10.7498/aps.69.20191835
    [10] 王瑜浩, 武保剑, 郭飚, 文峰, 邱昆. 基于非线性光纤环形镜的少模脉冲幅度调制再生器研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191858
    [11] 李闯, 李伟伟, 蔡理, 谢丹, 刘保军, 向兰, 杨晓阔, 董丹娜, 刘嘉豪, 陈亚博. 基于银纳米线电极-rGO敏感材料的柔性NO2气体传感器. 物理学报, 2020, 69(5): 058101. doi: 10.7498/aps.69.20191390
    [12] 罗菊, 韩敬华. 激光等离子体去除微纳颗粒的热力学研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191933
    [13] 刘家合, 鲁佳哲, 雷俊杰, 高勋, 林景全. 气体压强对纳秒激光诱导空气等离子体特性的影响. 物理学报, 2020, 69(5): 057401. doi: 10.7498/aps.69.20191540
    [14] 刘厚通, 毛敏娟. 一种无需定标的地基激光雷达气溶胶消光系数精确反演方法. 物理学报, 2019, 68(7): 074205. doi: 10.7498/aps.68.20181825
    [15] 周旭聪, 石尚, 李飞, 孟庆田, 王兵兵. 利用双色激光场下域上电离谱鉴别H32+ 两种不同分子构型. 物理学报, 2020, (): . doi: 10.7498/aps.69.20200013
  • 引用本文:
    Citation:
计量
  • 文章访问数:  535
  • PDF下载量:  217
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-06
  • 修回日期:  2017-03-21
  • 刊出日期:  2017-06-20

线宽增强因子对光反馈半导体激光器混沌信号生成随机数性能的影响

  • 1. 太原理工大学, 新型传感器与智能控制教育部重点实验室, 太原 030024;
  • 2. 太原理工大学物理与光电工程学院, 光电工程研究所, 太原 030024
  • 通信作者: 刘香莲, liuxianglian@tyut.edu.cn
    基金项目: 

    山西省自然科学基金(批准号:201601D021021)、国家自然科学基金(批准号:61671316,61505137,61405138,61505136)、国家自然科学基金科学仪器基础研究专款(批准号:61227016)、国家国际科技合作专项(批准号:2014DFA50870)和太原理工大学引进人才基金(批准号:tyutrc201387a)资助的课题.

摘要: 基于光反馈半导体激光器产生的宽带混沌信号作为物理熵源生成物理随机数已得到广泛研究.线宽增强因子的存在会导致半导体激光器出现大量不稳定动态特性,因此,本文着重研究半导体激光器的线宽增强因子对生成随机数性能的影响.数值仿真结果表明:随着线宽增强因子的增加,光反馈半导体激光器输出混沌信号的延时峰值逐渐减小、最大李雅普诺夫指数逐渐增大.基于不同线宽增强因子下产生的混沌信号提取随机数,并利用NIST SP 800-22软件对生成随机数的性能进行测试.测试结果表明,选取线宽增强因子较大的半导体激光器产生混沌信号作为物理熵源易于生成性能良好的随机数.

English Abstract

参考文献 (36)

目录

    /

    返回文章
    返回