搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非晶合金的离子辐照效应

卞西磊 王刚

非晶合金的离子辐照效应

卞西磊, 王刚
PDF
导出引用
  • 非晶合金作为一种快速凝固形成的新型合金材料,引起了材料研究者的极大兴趣.微观结构上长程无序、短程有序的特征使其具有独特的物理、化学和力学性能,在许多领域展现出良好的应用前景,尤其是有望成为核反应堆、航空航天等强辐照环境下的备选结构材料.本文深入探讨非晶合金的辐照效应,主要讨论离子辐照对非晶合金微观结构、宏观力学性能以及其他物理化学性能的影响,可为进一步理解非晶合金的微观结构和宏观力学性能之间的关系提供有效的实验和理论基础,也可为非晶合金在强辐照环境下的服役性能预测提供实验依据,对推进非晶合金这一先进材料的工程化应用具有重要的理论与实际意义.
      通信作者: 王刚, g.wang@i.shu.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号:2015CB856800)和国家自然科学基金(批准号:51671120)资助的课题.
    [1]

    Was G S 2007 Fundamentals of Radiation Materials Science: Metals and Alloys (Berlin: Springer)

    [2]

    Williams J C, Starke E A 2003 Acta Mater. 51 5775

    [3]

    Greer A L 1995 Science 267 1947

    [4]

    Wang W H, Dong C, Shek C H 2004 Mater. Sci. Eng. R 44 45

    [5]

    Inoue A 2000 Acta Mater. 48 279

    [6]

    Ritchie R O 2011 Nat. Mater. 10 817

    [7]

    Sun B A, Wang W H 2015 Prog. Mater. Sci. 74 211

    [8]

    Demetriou M D, Launey M E, Garrett G, Schramm J P, Hofmann D C, Johnson W L, Ritchie R O 2011 Nat. Mater. 10 123

    [9]

    Mayr S G 2005 Phys. Rev. B 71 144109

    [10]

    Mayr S G, Averback R S 2001 Phys. Rev. Lett. 87 196106

    [11]

    Mayr S G, Ashkenazy Y, Albe K, Averback R S 2003 Phys. Rev. Lett. 90 055505

    [12]

    Klaumunzer S, Schumacher G, Rentzsch S, Vogl G 1982 Acta Metall. 30 1493

    [13]

    Luo W D, Yang B, Chen G L 2011 Scripta Mater. 64 625

    [14]

    Carter J, Fu E G, Martin M, Xie G Q, Zhang X, Wang Y Q, Wijesundera D, Wang X M, Chu W K, Shao L 2009 Scripta Mater. 61 265

    [15]

    Shao L, Gorman B P, Aitkaliyeva A, Theodore N D, Xie G Q 2012 Appl. Phys. Lett. 101 041901

    [16]

    Carter J, Fu E G, Martin M, Xie G Q, Zhang X, Wang Y Q, Wijesundera D, Wang X M, Chu W K, McDeavitt S M, Shao L 2009 Nucl. Instrum. Methods Phys. Res. Sect. B 267 2827

    [17]

    Huang Y J, Fan H B, Zhou X Y, Xue P, Ning Z L, Daisenberger D, Sun J F, Shen J 2015 Scripta Mater. 103 41

    [18]

    Bian X L, Wang G, Chen H C, Yan L, Wang J G, Wang Q, Hu P F, Ren J L, Chan K C, Zheng N, Teresiak A, Gao Y L, Zhai Q J, Eckert J, Beadsworth J, Dahmen K A, Liaw P K 2016 Acta Mater. 106 66

    [19]

    Perez-Bergquist A G, Bei H B, Leonard K J, Zhang Y W, Zinkle S J 2014 Intermetallics 53 62

    [20]

    Myers M, Fu E G, Myers M, Wang H, Xie G Q, Wang X, Chu W K, Shao L 2010 Scripta Mater. 63 1045

    [21]

    Myers M, Charnvanichborikarn S, Wei C, Luo Z, Xie G, Kucheyev S, Lucca D, Shao L 2012 Scripta Mater. 67 887

    [22]

    Rizza G, Dunlop A, Jaskierowicz G, Kopcewicz G 2004 Nucl. Instrum. Methods Phys. Res. Sect. B 226 609

    [23]

    Chen H C, Cao G Q, Liu R D, Wang G, Yan L, Zhou X T 2015 J. Appl. Phys. 118 035308

    [24]

    Kawasegia N, Morita N, Yamada N, Takano N, Oyama N, Ashida K, Taniguchi J, MiyamotoI, Momota S, Ofune H 2006 Appl. Phys. Lett. 89 143115

    [25]

    Yang Y Z, Tao P J, Li G Q, Mu Z X, Ru Q, Xie Z W, Chen X C 2009 Intermetallics 17 722

    [26]

    Qin W, Szpunar J A, Umakoshi Y 2011 Acta Mater. 59 2221

    [27]

    Thomas S, Thomas H, Avasthi D K, Tripathi A, Ramanujan R V, Anantharaman M R 2009 J. Appl. Phys. 105 033910

    [28]

    Gutzmann A, Klaumnzer S, Meier P 1995 Phys. Rev. Lett. 74 2256

    [29]

    Ridgway M C, Bierschenk T, Giulian R, Afra B, Rodriguez M D, Araujo L L, Byrne A P, Kirby N, Pakarinen O H, Djurabekova F, Nordlund K, Schleberger M, Osmani O, Medvedev N, Rethfeld B, Kluth P 2013 Phys. Rev. Lett. 110 245502

    [30]

    Xiao Q, Huang L, Shi Y 2013 J. Appl. Phys. 113 083514

    [31]

    Avchaciov K A, Ritter Y, Djurabekova F, Nordlund K, Albe K 2013 Appl. Phys. Lett. 102 181910

    [32]

    Raghavan R, Boopathy K, Ghisleni R, Pouchon M A, Ramamurty U, Michler J 2010 Scripta Mater. 62 462

    [33]

    Liu Y H, Zhao F, Li Y L, Chen M W 2012 J. Appl. Phys. 112 063504

    [34]

    Raghavan R, Kombaiah B, Döbeli M, Erni R, Ramamurty U, Michler J 2012 Mater. Sci. Eng. A 532 407

    [35]

    Magagnosc D J, Ehrbar R, Kumar G, He M R, Schroers J, Gianola D S 2013 Sci. Rep. 3 1096

    [36]

    Magagnosc D J, Kumar G, Schroers J, Felfer P, Cairney J M, Gianola D S 2014 Acta Mater. 74 165

    [37]

    Jang D, Greer J R 2010 Nat. Mater. 9 215

    [38]

    Liontas R, Gu X W, Fu E, Wang Y, Li N, Mara N, Greer J R 2014 Nano Lett. 14 5176

    [39]

    Jia H L, Muntele C I, Huang L, Li X, Li G, Zhang T, He W, Liaw P K 2013 Intermetallics 41 35

    [40]

    Jiang Q K, Qin C L, Amiya K, Nagata S, Inoue A, Zheng R T, Cheng G A, Nie X P, Jiang J Z 2008 Intermetallics 16 225

    [41]

    Menendez E, Hynowska A, Fornell J, Surinach S, Montserrat J, Temst K, Vantomme A, Baro M D, Garcia-Lecina E, Pellicer E, Sort J 2014 J. Alloys Compd. 610 118

    [42]

    Okunev V D, Samoilenko Z A, Szewczyk A, Szymczak R, Szymczak H, Lewandowski S J, Aleshkevych P, Więckowski J, Khmelevskaya V S, Antoshina I A 2011 J. Phys. Condens. Matter 23 415702

  • [1]

    Was G S 2007 Fundamentals of Radiation Materials Science: Metals and Alloys (Berlin: Springer)

    [2]

    Williams J C, Starke E A 2003 Acta Mater. 51 5775

    [3]

    Greer A L 1995 Science 267 1947

    [4]

    Wang W H, Dong C, Shek C H 2004 Mater. Sci. Eng. R 44 45

    [5]

    Inoue A 2000 Acta Mater. 48 279

    [6]

    Ritchie R O 2011 Nat. Mater. 10 817

    [7]

    Sun B A, Wang W H 2015 Prog. Mater. Sci. 74 211

    [8]

    Demetriou M D, Launey M E, Garrett G, Schramm J P, Hofmann D C, Johnson W L, Ritchie R O 2011 Nat. Mater. 10 123

    [9]

    Mayr S G 2005 Phys. Rev. B 71 144109

    [10]

    Mayr S G, Averback R S 2001 Phys. Rev. Lett. 87 196106

    [11]

    Mayr S G, Ashkenazy Y, Albe K, Averback R S 2003 Phys. Rev. Lett. 90 055505

    [12]

    Klaumunzer S, Schumacher G, Rentzsch S, Vogl G 1982 Acta Metall. 30 1493

    [13]

    Luo W D, Yang B, Chen G L 2011 Scripta Mater. 64 625

    [14]

    Carter J, Fu E G, Martin M, Xie G Q, Zhang X, Wang Y Q, Wijesundera D, Wang X M, Chu W K, Shao L 2009 Scripta Mater. 61 265

    [15]

    Shao L, Gorman B P, Aitkaliyeva A, Theodore N D, Xie G Q 2012 Appl. Phys. Lett. 101 041901

    [16]

    Carter J, Fu E G, Martin M, Xie G Q, Zhang X, Wang Y Q, Wijesundera D, Wang X M, Chu W K, McDeavitt S M, Shao L 2009 Nucl. Instrum. Methods Phys. Res. Sect. B 267 2827

    [17]

    Huang Y J, Fan H B, Zhou X Y, Xue P, Ning Z L, Daisenberger D, Sun J F, Shen J 2015 Scripta Mater. 103 41

    [18]

    Bian X L, Wang G, Chen H C, Yan L, Wang J G, Wang Q, Hu P F, Ren J L, Chan K C, Zheng N, Teresiak A, Gao Y L, Zhai Q J, Eckert J, Beadsworth J, Dahmen K A, Liaw P K 2016 Acta Mater. 106 66

    [19]

    Perez-Bergquist A G, Bei H B, Leonard K J, Zhang Y W, Zinkle S J 2014 Intermetallics 53 62

    [20]

    Myers M, Fu E G, Myers M, Wang H, Xie G Q, Wang X, Chu W K, Shao L 2010 Scripta Mater. 63 1045

    [21]

    Myers M, Charnvanichborikarn S, Wei C, Luo Z, Xie G, Kucheyev S, Lucca D, Shao L 2012 Scripta Mater. 67 887

    [22]

    Rizza G, Dunlop A, Jaskierowicz G, Kopcewicz G 2004 Nucl. Instrum. Methods Phys. Res. Sect. B 226 609

    [23]

    Chen H C, Cao G Q, Liu R D, Wang G, Yan L, Zhou X T 2015 J. Appl. Phys. 118 035308

    [24]

    Kawasegia N, Morita N, Yamada N, Takano N, Oyama N, Ashida K, Taniguchi J, MiyamotoI, Momota S, Ofune H 2006 Appl. Phys. Lett. 89 143115

    [25]

    Yang Y Z, Tao P J, Li G Q, Mu Z X, Ru Q, Xie Z W, Chen X C 2009 Intermetallics 17 722

    [26]

    Qin W, Szpunar J A, Umakoshi Y 2011 Acta Mater. 59 2221

    [27]

    Thomas S, Thomas H, Avasthi D K, Tripathi A, Ramanujan R V, Anantharaman M R 2009 J. Appl. Phys. 105 033910

    [28]

    Gutzmann A, Klaumnzer S, Meier P 1995 Phys. Rev. Lett. 74 2256

    [29]

    Ridgway M C, Bierschenk T, Giulian R, Afra B, Rodriguez M D, Araujo L L, Byrne A P, Kirby N, Pakarinen O H, Djurabekova F, Nordlund K, Schleberger M, Osmani O, Medvedev N, Rethfeld B, Kluth P 2013 Phys. Rev. Lett. 110 245502

    [30]

    Xiao Q, Huang L, Shi Y 2013 J. Appl. Phys. 113 083514

    [31]

    Avchaciov K A, Ritter Y, Djurabekova F, Nordlund K, Albe K 2013 Appl. Phys. Lett. 102 181910

    [32]

    Raghavan R, Boopathy K, Ghisleni R, Pouchon M A, Ramamurty U, Michler J 2010 Scripta Mater. 62 462

    [33]

    Liu Y H, Zhao F, Li Y L, Chen M W 2012 J. Appl. Phys. 112 063504

    [34]

    Raghavan R, Kombaiah B, Döbeli M, Erni R, Ramamurty U, Michler J 2012 Mater. Sci. Eng. A 532 407

    [35]

    Magagnosc D J, Ehrbar R, Kumar G, He M R, Schroers J, Gianola D S 2013 Sci. Rep. 3 1096

    [36]

    Magagnosc D J, Kumar G, Schroers J, Felfer P, Cairney J M, Gianola D S 2014 Acta Mater. 74 165

    [37]

    Jang D, Greer J R 2010 Nat. Mater. 9 215

    [38]

    Liontas R, Gu X W, Fu E, Wang Y, Li N, Mara N, Greer J R 2014 Nano Lett. 14 5176

    [39]

    Jia H L, Muntele C I, Huang L, Li X, Li G, Zhang T, He W, Liaw P K 2013 Intermetallics 41 35

    [40]

    Jiang Q K, Qin C L, Amiya K, Nagata S, Inoue A, Zheng R T, Cheng G A, Nie X P, Jiang J Z 2008 Intermetallics 16 225

    [41]

    Menendez E, Hynowska A, Fornell J, Surinach S, Montserrat J, Temst K, Vantomme A, Baro M D, Garcia-Lecina E, Pellicer E, Sort J 2014 J. Alloys Compd. 610 118

    [42]

    Okunev V D, Samoilenko Z A, Szewczyk A, Szymczak R, Szymczak H, Lewandowski S J, Aleshkevych P, Więckowski J, Khmelevskaya V S, Antoshina I A 2011 J. Phys. Condens. Matter 23 415702

  • 引用本文:
    Citation:
计量
  • 文章访问数:  2443
  • PDF下载量:  374
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-31
  • 修回日期:  2017-06-26
  • 刊出日期:  2017-09-05

非晶合金的离子辐照效应

  • 1. 上海大学材料研究所, 微结构重点实验室, 上海 200444
  • 通信作者: 王刚, g.wang@i.shu.edu.cn
    基金项目: 

    国家重点基础研究发展计划(批准号:2015CB856800)和国家自然科学基金(批准号:51671120)资助的课题.

摘要: 非晶合金作为一种快速凝固形成的新型合金材料,引起了材料研究者的极大兴趣.微观结构上长程无序、短程有序的特征使其具有独特的物理、化学和力学性能,在许多领域展现出良好的应用前景,尤其是有望成为核反应堆、航空航天等强辐照环境下的备选结构材料.本文深入探讨非晶合金的辐照效应,主要讨论离子辐照对非晶合金微观结构、宏观力学性能以及其他物理化学性能的影响,可为进一步理解非晶合金的微观结构和宏观力学性能之间的关系提供有效的实验和理论基础,也可为非晶合金在强辐照环境下的服役性能预测提供实验依据,对推进非晶合金这一先进材料的工程化应用具有重要的理论与实际意义.

English Abstract

参考文献 (42)

目录

    /

    返回文章
    返回